{"title":"具有不同偏转角的面向太阳的衍射太阳帆的最短会合时间","authors":"Yin Chu, Shengping Gong","doi":"10.1007/s42064-024-0207-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the heliocentric time-optimal rendezvous performance of Sun-facing diffractive solar sails with various deflection angles and acceleration capabilities. Diffractive solar sails, which generate tangential radiation pressure force, are proposed and schematically designed to achieve diverse radiation pressure distributions. The radiation pressure force model and the time-optimal control problem for these innovative Sun-facing diffractive solar sails are established. Utilizing an indirect method and the optimal control law, we explore typical heliocentric rendezvous scenarios to assess the variational trends of transfer time in relation to different deflection angles and acceleration capabilities. The results for Sun-facing diffractive sails in specific rendezvous missions are compared to reflective sails with the same area-to-mass ratio, focusing on transfer trajectory and attitude control. Our findings reveal that diffractive sails exhibit significant advantages over reflective sails, particularly in the context of normal acceleration, paving the way for more efficient space exploration.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"8 4","pages":"613 - 631"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimum-time rendezvous for Sun-facing diffractive solar sails with diverse deflection angles\",\"authors\":\"Yin Chu, Shengping Gong\",\"doi\":\"10.1007/s42064-024-0207-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the heliocentric time-optimal rendezvous performance of Sun-facing diffractive solar sails with various deflection angles and acceleration capabilities. Diffractive solar sails, which generate tangential radiation pressure force, are proposed and schematically designed to achieve diverse radiation pressure distributions. The radiation pressure force model and the time-optimal control problem for these innovative Sun-facing diffractive solar sails are established. Utilizing an indirect method and the optimal control law, we explore typical heliocentric rendezvous scenarios to assess the variational trends of transfer time in relation to different deflection angles and acceleration capabilities. The results for Sun-facing diffractive sails in specific rendezvous missions are compared to reflective sails with the same area-to-mass ratio, focusing on transfer trajectory and attitude control. Our findings reveal that diffractive sails exhibit significant advantages over reflective sails, particularly in the context of normal acceleration, paving the way for more efficient space exploration.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":\"8 4\",\"pages\":\"613 - 631\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-024-0207-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-024-0207-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Minimum-time rendezvous for Sun-facing diffractive solar sails with diverse deflection angles
This paper investigates the heliocentric time-optimal rendezvous performance of Sun-facing diffractive solar sails with various deflection angles and acceleration capabilities. Diffractive solar sails, which generate tangential radiation pressure force, are proposed and schematically designed to achieve diverse radiation pressure distributions. The radiation pressure force model and the time-optimal control problem for these innovative Sun-facing diffractive solar sails are established. Utilizing an indirect method and the optimal control law, we explore typical heliocentric rendezvous scenarios to assess the variational trends of transfer time in relation to different deflection angles and acceleration capabilities. The results for Sun-facing diffractive sails in specific rendezvous missions are compared to reflective sails with the same area-to-mass ratio, focusing on transfer trajectory and attitude control. Our findings reveal that diffractive sails exhibit significant advantages over reflective sails, particularly in the context of normal acceleration, paving the way for more efficient space exploration.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.