结合改进的 YOLOv5 和高斯滤波设计煤矿钻探检测模型

Q2 Energy Energy Informatics Pub Date : 2024-09-30 DOI:10.1186/s42162-024-00387-3
Qiyong Feng, Yanping Xue
{"title":"结合改进的 YOLOv5 和高斯滤波设计煤矿钻探检测模型","authors":"Qiyong Feng,&nbsp;Yanping Xue","doi":"10.1186/s42162-024-00387-3","DOIUrl":null,"url":null,"abstract":"<div><p>Coal is currently the most important energy source in most countries. With the advent of information intelligence, more and more intelligent technologies are being applied in coal mine detection. A new model for coal mine drilling detection, which combines improved YOLOv5 and Gaussian filtering, is proposed to address the low efficiency and poor accuracy in manual detection of coal mine drilling. This new model incorporates attention mechanism and multi-object detection model on the basis of traditional YOLOv5. Due to factors such as equipment vibration and electrical interference in drilling detection, random noise is often mixed into the image signal data obtained. In order to effectively reduce the impact of noise on data and improve signal-to-noise ratio, Gaussian filtering method is studied for data denoising. This new model’s border regression loss value was 0.004 lower than the YOLOv5 loss value. This new optimization method’s accuracy was improved from 0.966 to 0.982. This new model improved the detection accuracy of small cracks by about 0.05. The detection depth of the coal seam in this new model was 9.54 m, which was closer to the true value than other methods. Therefore, using the new model to detect coal mine boreholes can effectively improve the accuracy of borehole detection images, which has a good effect on the analysis of coal mine rock layers. This new model has a good guiding role in the detection images and rock analysis research of future coal mine boreholes. The research has good research value in oil drilling inspection, natural gas pipeline monitoring, and quality inspection of industrial automation systems. This provides important technical support for future coal mine drilling image detection and rock analysis research.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00387-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Design of coal mine drilling detection model combining improved YOLOv5 and Gaussian filtering\",\"authors\":\"Qiyong Feng,&nbsp;Yanping Xue\",\"doi\":\"10.1186/s42162-024-00387-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coal is currently the most important energy source in most countries. With the advent of information intelligence, more and more intelligent technologies are being applied in coal mine detection. A new model for coal mine drilling detection, which combines improved YOLOv5 and Gaussian filtering, is proposed to address the low efficiency and poor accuracy in manual detection of coal mine drilling. This new model incorporates attention mechanism and multi-object detection model on the basis of traditional YOLOv5. Due to factors such as equipment vibration and electrical interference in drilling detection, random noise is often mixed into the image signal data obtained. In order to effectively reduce the impact of noise on data and improve signal-to-noise ratio, Gaussian filtering method is studied for data denoising. This new model’s border regression loss value was 0.004 lower than the YOLOv5 loss value. This new optimization method’s accuracy was improved from 0.966 to 0.982. This new model improved the detection accuracy of small cracks by about 0.05. The detection depth of the coal seam in this new model was 9.54 m, which was closer to the true value than other methods. Therefore, using the new model to detect coal mine boreholes can effectively improve the accuracy of borehole detection images, which has a good effect on the analysis of coal mine rock layers. This new model has a good guiding role in the detection images and rock analysis research of future coal mine boreholes. The research has good research value in oil drilling inspection, natural gas pipeline monitoring, and quality inspection of industrial automation systems. This provides important technical support for future coal mine drilling image detection and rock analysis research.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s42162-024-00387-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00387-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00387-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

煤炭是目前大多数国家最重要的能源。随着信息智能时代的到来,越来越多的智能技术被应用于煤矿探测。针对人工检测煤矿钻孔效率低、精度差的问题,提出了一种结合改进型 YOLOv5 和高斯滤波的煤矿钻孔检测新模型。新模型在传统 YOLOv5 的基础上加入了注意力机制和多目标检测模型。在钻孔检测中,由于设备振动、电气干扰等因素,往往会在获取的图像信号数据中混入随机噪声。为了有效降低噪声对数据的影响,提高信噪比,研究了高斯滤波法对数据进行去噪处理。这种新模型的边界回归损失值比 YOLOv5 损失值低 0.004。新优化方法的精确度从 0.966 提高到 0.982。新模型对小裂缝的检测精度提高了约 0.05。新模型的煤层检测深度为 9.54 米,比其他方法更接近真实值。因此,利用新模型检测煤矿钻孔可以有效提高钻孔检测图像的准确性,对煤矿岩层分析具有良好的效果。该新模型对今后煤矿井眼的探测图像和岩层分析研究具有很好的指导作用。在石油钻井检测、天然气管道监测、工业自动化系统质量检测等方面具有很好的研究价值。为今后煤矿钻孔图像检测和岩石分析研究提供了重要的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of coal mine drilling detection model combining improved YOLOv5 and Gaussian filtering

Coal is currently the most important energy source in most countries. With the advent of information intelligence, more and more intelligent technologies are being applied in coal mine detection. A new model for coal mine drilling detection, which combines improved YOLOv5 and Gaussian filtering, is proposed to address the low efficiency and poor accuracy in manual detection of coal mine drilling. This new model incorporates attention mechanism and multi-object detection model on the basis of traditional YOLOv5. Due to factors such as equipment vibration and electrical interference in drilling detection, random noise is often mixed into the image signal data obtained. In order to effectively reduce the impact of noise on data and improve signal-to-noise ratio, Gaussian filtering method is studied for data denoising. This new model’s border regression loss value was 0.004 lower than the YOLOv5 loss value. This new optimization method’s accuracy was improved from 0.966 to 0.982. This new model improved the detection accuracy of small cracks by about 0.05. The detection depth of the coal seam in this new model was 9.54 m, which was closer to the true value than other methods. Therefore, using the new model to detect coal mine boreholes can effectively improve the accuracy of borehole detection images, which has a good effect on the analysis of coal mine rock layers. This new model has a good guiding role in the detection images and rock analysis research of future coal mine boreholes. The research has good research value in oil drilling inspection, natural gas pipeline monitoring, and quality inspection of industrial automation systems. This provides important technical support for future coal mine drilling image detection and rock analysis research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Intelligent information systems for power grid fault analysis by computer communication technology Application of simulated annealing algorithm in multi-objective cooperative scheduling of load and storage of source network for load side of new power system Hierarchical quantitative prediction of photovoltaic power generation depreciation expense based on matrix task prioritization considering uncertainty risk Transmission line trip faults under extreme snow and ice conditions: a case study A photovoltaic power ultra short-term prediction method integrating Hungarian clustering and PSO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1