TIP: 多人多机器人团队中的信任推断和传播模型

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Autonomous Robots Pub Date : 2024-09-30 DOI:10.1007/s10514-024-10175-3
Yaohui Guo, X. Jessie Yang, Cong Shi
{"title":"TIP: 多人多机器人团队中的信任推断和传播模型","authors":"Yaohui Guo,&nbsp;X. Jessie Yang,&nbsp;Cong Shi","doi":"10.1007/s10514-024-10175-3","DOIUrl":null,"url":null,"abstract":"<div><p>Trust is a crucial factor for effective human–robot teaming. Existing literature on trust modeling predominantly focuses on dyadic human-autonomy teams where one human agent interacts with one robot. There is little, if not no, research on trust modeling in teams consisting of multiple human and robotic agents. To fill this important research gap, we present the Trust Inference and Propagation (TIP) model to model and estimate human trust in multi-human multi-robot teams. In a multi-human multi-robot team, we postulate that there exist two types of experiences that a human agent has with a robot: direct and indirect experiences. The TIP model presents a novel mathematical framework that explicitly accounts for both types of experiences. To evaluate the model, we conducted a human-subject experiment with 15 pairs of participants (<span>\\(N=30\\)</span>). Each pair performed a search and detection task with two drones. Results show that our TIP model successfully captured the underlying trust dynamics and significantly outperformed a baseline model. To the best of our knowledge, the TIP model is the first mathematical framework for computational trust modeling in multi-human multi-robot teams.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-024-10175-3.pdf","citationCount":"0","resultStr":"{\"title\":\"TIP: A trust inference and propagation model in multi-human multi-robot teams\",\"authors\":\"Yaohui Guo,&nbsp;X. Jessie Yang,&nbsp;Cong Shi\",\"doi\":\"10.1007/s10514-024-10175-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Trust is a crucial factor for effective human–robot teaming. Existing literature on trust modeling predominantly focuses on dyadic human-autonomy teams where one human agent interacts with one robot. There is little, if not no, research on trust modeling in teams consisting of multiple human and robotic agents. To fill this important research gap, we present the Trust Inference and Propagation (TIP) model to model and estimate human trust in multi-human multi-robot teams. In a multi-human multi-robot team, we postulate that there exist two types of experiences that a human agent has with a robot: direct and indirect experiences. The TIP model presents a novel mathematical framework that explicitly accounts for both types of experiences. To evaluate the model, we conducted a human-subject experiment with 15 pairs of participants (<span>\\\\(N=30\\\\)</span>). Each pair performed a search and detection task with two drones. Results show that our TIP model successfully captured the underlying trust dynamics and significantly outperformed a baseline model. To the best of our knowledge, the TIP model is the first mathematical framework for computational trust modeling in multi-human multi-robot teams.</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-024-10175-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-024-10175-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-024-10175-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

信任是人类与机器人有效合作的关键因素。关于信任建模的现有文献主要集中在二元人类-自主团队,即一个人类代理与一个机器人互动。关于由多个人类和机器人代理组成的团队的信任建模的研究很少,甚至没有。为了填补这一重要的研究空白,我们提出了信任推理与传播(TIP)模型,用于模拟和估算多人多机器人团队中的人类信任度。在一个多人多机器人团队中,我们假设人类代理与机器人之间存在两类经验:直接经验和间接经验。TIP 模型提出了一个新颖的数学框架,明确地说明了这两种类型的体验。为了评估该模型,我们用 15 对参与者((N=30))进行了人类-主体实验。每对参与者使用两架无人机完成搜索和探测任务。结果表明,我们的 TIP 模型成功捕捉到了潜在的信任动态,其表现明显优于基线模型。据我们所知,TIP 模型是第一个用于多人多机器人团队信任建模的数学框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TIP: A trust inference and propagation model in multi-human multi-robot teams

Trust is a crucial factor for effective human–robot teaming. Existing literature on trust modeling predominantly focuses on dyadic human-autonomy teams where one human agent interacts with one robot. There is little, if not no, research on trust modeling in teams consisting of multiple human and robotic agents. To fill this important research gap, we present the Trust Inference and Propagation (TIP) model to model and estimate human trust in multi-human multi-robot teams. In a multi-human multi-robot team, we postulate that there exist two types of experiences that a human agent has with a robot: direct and indirect experiences. The TIP model presents a novel mathematical framework that explicitly accounts for both types of experiences. To evaluate the model, we conducted a human-subject experiment with 15 pairs of participants (\(N=30\)). Each pair performed a search and detection task with two drones. Results show that our TIP model successfully captured the underlying trust dynamics and significantly outperformed a baseline model. To the best of our knowledge, the TIP model is the first mathematical framework for computational trust modeling in multi-human multi-robot teams.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autonomous Robots
Autonomous Robots 工程技术-机器人学
CiteScore
7.90
自引率
5.70%
发文量
46
审稿时长
3 months
期刊介绍: Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development. The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.
期刊最新文献
Optimal policies for autonomous navigation in strong currents using fast marching trees A concurrent learning approach to monocular vision range regulation of leader/follower systems Correction: Planning under uncertainty for safe robot exploration using gaussian process prediction Dynamic event-triggered integrated task and motion planning for process-aware source seeking Continuous planning for inertial-aided systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1