D. M. Kuzina, V. P. Shcherbakov, N. V. Salnaia, A. R. Yusupova, H.-Ch. Li, D. K. Nurgaliev
{"title":"用伪泰勒法估算的过去 9000 年地磁场的相对古强度(来自北哈卡西亚的希拉湖底沉积物","authors":"D. M. Kuzina, V. P. Shcherbakov, N. V. Salnaia, A. R. Yusupova, H.-Ch. Li, D. K. Nurgaliev","doi":"10.1134/S1069351324700587","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—The paper presents the results of rock magnetic studies and relative paleointensity determinations from sediments of Lake Shira, Khakassia. Carrier minerals of natural remanent magnetization (NRM) were identified through hysteresis loop parameter measurements, thermomagnetic and X-ray diffraction (XRD) analyses. The sediment age was determined by radiocarbon dating; according to age estimates, the studied sediment sequence covers approximately the past 9100 years. To obtain high-quality relative paleointensity results, the determinations were made on linear segments of the pseudo-Arai‒Nagata diagrams. The quality was assessed by the criteria of the number of points in the calculations of slope, quality criterion (<i>q</i>), NRM fraction destroyed in the paleointensity determination interval, and relative paleointensity determination error (σ). According to the rock magnetic studies and XRD analysis, the magnetic carriers are mainly single-domain (SD) and pseudo-single-domain (PSD) magnetite and hematite. The comparison of the obtained relative paleointensity data with model paleointensities calculated for the Shira coordinates from the various models (CALS10K.1b (Korte et al., 2011), PFM9k.1 (Nilsson et al., 2014), HFM.OL1.AL1, CALS10k.2 ARCH10k.1 (Constable et al., 2016)), with absolute paleointensities and with the collection of results from the studies of sedimentary and igneous rocks and archaeomagnetic objects has shown that these data are in good agreement and share common trends. This provides grounds for applying this approach to paleointensity determination from bottom sediments of modern lakes using the pseudo-Thellier method.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"60 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative Paleointensity of Geomagnetic Field over the Past 9000 Years Estimated by the Pseudo-Thellier Method from the Bottom Sediments of Lake Shira, Northern Khakassia\",\"authors\":\"D. M. Kuzina, V. P. Shcherbakov, N. V. Salnaia, A. R. Yusupova, H.-Ch. Li, D. K. Nurgaliev\",\"doi\":\"10.1134/S1069351324700587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b>—The paper presents the results of rock magnetic studies and relative paleointensity determinations from sediments of Lake Shira, Khakassia. Carrier minerals of natural remanent magnetization (NRM) were identified through hysteresis loop parameter measurements, thermomagnetic and X-ray diffraction (XRD) analyses. The sediment age was determined by radiocarbon dating; according to age estimates, the studied sediment sequence covers approximately the past 9100 years. To obtain high-quality relative paleointensity results, the determinations were made on linear segments of the pseudo-Arai‒Nagata diagrams. The quality was assessed by the criteria of the number of points in the calculations of slope, quality criterion (<i>q</i>), NRM fraction destroyed in the paleointensity determination interval, and relative paleointensity determination error (σ). According to the rock magnetic studies and XRD analysis, the magnetic carriers are mainly single-domain (SD) and pseudo-single-domain (PSD) magnetite and hematite. The comparison of the obtained relative paleointensity data with model paleointensities calculated for the Shira coordinates from the various models (CALS10K.1b (Korte et al., 2011), PFM9k.1 (Nilsson et al., 2014), HFM.OL1.AL1, CALS10k.2 ARCH10k.1 (Constable et al., 2016)), with absolute paleointensities and with the collection of results from the studies of sedimentary and igneous rocks and archaeomagnetic objects has shown that these data are in good agreement and share common trends. This provides grounds for applying this approach to paleointensity determination from bottom sediments of modern lakes using the pseudo-Thellier method.</p>\",\"PeriodicalId\":602,\"journal\":{\"name\":\"Izvestiya, Physics of the Solid Earth\",\"volume\":\"60 4\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya, Physics of the Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1069351324700587\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya, Physics of the Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S1069351324700587","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Relative Paleointensity of Geomagnetic Field over the Past 9000 Years Estimated by the Pseudo-Thellier Method from the Bottom Sediments of Lake Shira, Northern Khakassia
Abstract—The paper presents the results of rock magnetic studies and relative paleointensity determinations from sediments of Lake Shira, Khakassia. Carrier minerals of natural remanent magnetization (NRM) were identified through hysteresis loop parameter measurements, thermomagnetic and X-ray diffraction (XRD) analyses. The sediment age was determined by radiocarbon dating; according to age estimates, the studied sediment sequence covers approximately the past 9100 years. To obtain high-quality relative paleointensity results, the determinations were made on linear segments of the pseudo-Arai‒Nagata diagrams. The quality was assessed by the criteria of the number of points in the calculations of slope, quality criterion (q), NRM fraction destroyed in the paleointensity determination interval, and relative paleointensity determination error (σ). According to the rock magnetic studies and XRD analysis, the magnetic carriers are mainly single-domain (SD) and pseudo-single-domain (PSD) magnetite and hematite. The comparison of the obtained relative paleointensity data with model paleointensities calculated for the Shira coordinates from the various models (CALS10K.1b (Korte et al., 2011), PFM9k.1 (Nilsson et al., 2014), HFM.OL1.AL1, CALS10k.2 ARCH10k.1 (Constable et al., 2016)), with absolute paleointensities and with the collection of results from the studies of sedimentary and igneous rocks and archaeomagnetic objects has shown that these data are in good agreement and share common trends. This provides grounds for applying this approach to paleointensity determination from bottom sediments of modern lakes using the pseudo-Thellier method.
期刊介绍:
Izvestiya, Physics of the Solid Earth is an international peer reviewed journal that publishes results of original theoretical and experimental research in relevant areas of the physics of the Earth''s interior and applied geophysics. The journal welcomes manuscripts from all countries in the English or Russian language.