Asish K. Kundu, Anil Rajapitamahuni, Elio Vescovo, Ilya I. Klimovskikh, Helmuth Berger, Tonica Valla
{"title":"电荷密度波和单轴应变对 2H-NbSe2 电子结构的影响","authors":"Asish K. Kundu, Anil Rajapitamahuni, Elio Vescovo, Ilya I. Klimovskikh, Helmuth Berger, Tonica Valla","doi":"10.1038/s43246-024-00661-7","DOIUrl":null,"url":null,"abstract":"Interplay of superconductivity and density wave orders has been at the forefront of research of correlated electronic phases for a long time. 2H-NbSe2 is considered to be a prototype system for studying this interplay, where the balance between the two orders was proven to be sensitive to band filling and pressure. However, the origin of charge density wave in this material is still unresolved. Here, by using angle-resolved photoemission spectroscopy, we revisit the charge density wave order and study the effects of uniaxial strain on the electronic structure of 2H-NbSe2. Our results indicate previously undetected signatures of charge density waves on the Fermi surface. The application of small amount of uniaxial strain induces substantial changes in the electronic structure and lowers its symmetry. This, and the altered lattice should affect both the charge density wave phase and superconductivity and should be observable in the macroscopic properties. 2H-NbSe2 is a prototype system for studying the interplay between superconductivity and density wave orders. Here, an angle-resolved photoemission spectroscopy study provides insights into the origin of charge density wave in this material and reveals the substantial effects of uniaxial strain in modifying the electronic structure.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00661-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Charge density waves and the effects of uniaxial strain on the electronic structure of 2H-NbSe2\",\"authors\":\"Asish K. Kundu, Anil Rajapitamahuni, Elio Vescovo, Ilya I. Klimovskikh, Helmuth Berger, Tonica Valla\",\"doi\":\"10.1038/s43246-024-00661-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interplay of superconductivity and density wave orders has been at the forefront of research of correlated electronic phases for a long time. 2H-NbSe2 is considered to be a prototype system for studying this interplay, where the balance between the two orders was proven to be sensitive to band filling and pressure. However, the origin of charge density wave in this material is still unresolved. Here, by using angle-resolved photoemission spectroscopy, we revisit the charge density wave order and study the effects of uniaxial strain on the electronic structure of 2H-NbSe2. Our results indicate previously undetected signatures of charge density waves on the Fermi surface. The application of small amount of uniaxial strain induces substantial changes in the electronic structure and lowers its symmetry. This, and the altered lattice should affect both the charge density wave phase and superconductivity and should be observable in the macroscopic properties. 2H-NbSe2 is a prototype system for studying the interplay between superconductivity and density wave orders. Here, an angle-resolved photoemission spectroscopy study provides insights into the origin of charge density wave in this material and reveals the substantial effects of uniaxial strain in modifying the electronic structure.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00661-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00661-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00661-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Charge density waves and the effects of uniaxial strain on the electronic structure of 2H-NbSe2
Interplay of superconductivity and density wave orders has been at the forefront of research of correlated electronic phases for a long time. 2H-NbSe2 is considered to be a prototype system for studying this interplay, where the balance between the two orders was proven to be sensitive to band filling and pressure. However, the origin of charge density wave in this material is still unresolved. Here, by using angle-resolved photoemission spectroscopy, we revisit the charge density wave order and study the effects of uniaxial strain on the electronic structure of 2H-NbSe2. Our results indicate previously undetected signatures of charge density waves on the Fermi surface. The application of small amount of uniaxial strain induces substantial changes in the electronic structure and lowers its symmetry. This, and the altered lattice should affect both the charge density wave phase and superconductivity and should be observable in the macroscopic properties. 2H-NbSe2 is a prototype system for studying the interplay between superconductivity and density wave orders. Here, an angle-resolved photoemission spectroscopy study provides insights into the origin of charge density wave in this material and reveals the substantial effects of uniaxial strain in modifying the electronic structure.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.