功能分级软硬界面的多材料三维打印技术,用于增强颞下颌关节置换假体的下颌运动学性能

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-10-12 DOI:10.1038/s43246-024-00664-4
Vahid Moosabeiki, Afaq Khan, Mauricio Cruz Saldivar, Wim Van Paepegem, Brend P. Jonker, Eppo B. Wolvius, Jie Zhou, Nazli Tumer, Mohammad J. Mirzaali, Amir A. Zadpoor
{"title":"功能分级软硬界面的多材料三维打印技术,用于增强颞下颌关节置换假体的下颌运动学性能","authors":"Vahid Moosabeiki, Afaq Khan, Mauricio Cruz Saldivar, Wim Van Paepegem, Brend P. Jonker, Eppo B. Wolvius, Jie Zhou, Nazli Tumer, Mohammad J. Mirzaali, Amir A. Zadpoor","doi":"10.1038/s43246-024-00664-4","DOIUrl":null,"url":null,"abstract":"Temporomandibular joint (TMJ) replacement prostheses often face limitations in accommodating translational movements, leading to unnatural kinematics and loading conditions, which affect functionality and longevity. Here, we investigate the potential of functionally graded materials (FGMs) in TMJ prostheses to enhance mandibular kinematics and reduce joint reaction forces. We develop a functionally graded artificial cartilage for the TMJ implant and evaluate five FGM designs: hard, hard-soft, and three FGM gradients with gradual transitions from 90% hard material to 0%, 10%, and 20%. These designs are 3D printed, mechanically tested under quasi-static compression, and simulated under physiological conditions. Results from computational modeling and experiments are compared to an intact mandible during incisal clenching and left group biting. The FGM design with a transition from 90% to 0% hard material improves kinematics by 19%  and decreases perfomance by 3%, reduces joint reaction forces by 8% and 10%, and increases mandibular movement by 20% and 88% during incisal clenching and left group biting, respectively. These findings provide valuable insights for next-generation TMJ implants. Temporomandibular joint prostheses have limitations in their translational movements that affect functionality and longevity. Here, a 3D-printed functionally graded artificial cartilage attached to the temporomandibular joint implant improves the mandibular kinematics and movement range.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-11"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00664-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-material 3D printing of functionally graded soft-hard interfaces for enhancing mandibular kinematics of temporomandibular joint replacement prostheses\",\"authors\":\"Vahid Moosabeiki, Afaq Khan, Mauricio Cruz Saldivar, Wim Van Paepegem, Brend P. Jonker, Eppo B. Wolvius, Jie Zhou, Nazli Tumer, Mohammad J. Mirzaali, Amir A. Zadpoor\",\"doi\":\"10.1038/s43246-024-00664-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporomandibular joint (TMJ) replacement prostheses often face limitations in accommodating translational movements, leading to unnatural kinematics and loading conditions, which affect functionality and longevity. Here, we investigate the potential of functionally graded materials (FGMs) in TMJ prostheses to enhance mandibular kinematics and reduce joint reaction forces. We develop a functionally graded artificial cartilage for the TMJ implant and evaluate five FGM designs: hard, hard-soft, and three FGM gradients with gradual transitions from 90% hard material to 0%, 10%, and 20%. These designs are 3D printed, mechanically tested under quasi-static compression, and simulated under physiological conditions. Results from computational modeling and experiments are compared to an intact mandible during incisal clenching and left group biting. The FGM design with a transition from 90% to 0% hard material improves kinematics by 19%  and decreases perfomance by 3%, reduces joint reaction forces by 8% and 10%, and increases mandibular movement by 20% and 88% during incisal clenching and left group biting, respectively. These findings provide valuable insights for next-generation TMJ implants. Temporomandibular joint prostheses have limitations in their translational movements that affect functionality and longevity. Here, a 3D-printed functionally graded artificial cartilage attached to the temporomandibular joint implant improves the mandibular kinematics and movement range.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00664-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00664-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00664-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

颞下颌关节(TMJ)置换假体在适应平移运动方面经常面临限制,导致不自然的运动学和加载条件,从而影响功能和寿命。在此,我们研究了颞下颌关节假体中的功能分级材料(FGMs)在增强下颌骨运动学和降低关节反作用力方面的潜力。我们为颞下颌关节植入物开发了一种功能分级人工软骨,并评估了五种 FGM 设计:硬质、软硬结合以及从 90% 硬质材料逐渐过渡到 0%、10% 和 20% 的三种 FGM 梯度。这些设计均采用三维打印技术,在准静态压缩条件下进行了机械测试,并在生理条件下进行了模拟。将计算建模和实验结果与切牙紧咬和左组咬合时的完整下颌骨进行比较。在切牙咬合和左组咬合过程中,硬质材料从 90% 过渡到 0% 的 FGM 设计将运动学性能提高了 19%,性能降低了 3%,关节反作用力分别降低了 8% 和 10%,下颌骨运动分别增加了 20% 和 88%。这些发现为下一代颞下颌关节植入物提供了宝贵的见解。颞下颌关节假体的平移运动存在局限性,影响了其功能性和使用寿命。在这里,一种附着于颞下颌关节植入物的三维打印功能分级人工软骨改善了下颌关节的运动学特性和运动范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-material 3D printing of functionally graded soft-hard interfaces for enhancing mandibular kinematics of temporomandibular joint replacement prostheses
Temporomandibular joint (TMJ) replacement prostheses often face limitations in accommodating translational movements, leading to unnatural kinematics and loading conditions, which affect functionality and longevity. Here, we investigate the potential of functionally graded materials (FGMs) in TMJ prostheses to enhance mandibular kinematics and reduce joint reaction forces. We develop a functionally graded artificial cartilage for the TMJ implant and evaluate five FGM designs: hard, hard-soft, and three FGM gradients with gradual transitions from 90% hard material to 0%, 10%, and 20%. These designs are 3D printed, mechanically tested under quasi-static compression, and simulated under physiological conditions. Results from computational modeling and experiments are compared to an intact mandible during incisal clenching and left group biting. The FGM design with a transition from 90% to 0% hard material improves kinematics by 19%  and decreases perfomance by 3%, reduces joint reaction forces by 8% and 10%, and increases mandibular movement by 20% and 88% during incisal clenching and left group biting, respectively. These findings provide valuable insights for next-generation TMJ implants. Temporomandibular joint prostheses have limitations in their translational movements that affect functionality and longevity. Here, a 3D-printed functionally graded artificial cartilage attached to the temporomandibular joint implant improves the mandibular kinematics and movement range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Ideal spin-orbit-free Dirac semimetal and diverse topological transitions in Y8CoIn3 family Design of highly responsive chemiresistor-based sensors by interfacing NiPc with graphene Rapid and precise large area mapping of rare-earth doping homogeneity in luminescent materials Machine vision system by optically tunable 2D magnetic junctions Unraveling the origin of conductivity change in Co-doped FeRh phase transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1