{"title":"高温质子交换膜燃料电池的性能故障机制和缓解策略","authors":"Shufan Wang, Yun Zheng, Chenhui Xv, Haishan Liu, Lingfei Li, Wei Yan, Jiujun Zhang","doi":"10.1016/j.pmatsci.2024.101389","DOIUrl":null,"url":null,"abstract":"<div><div>As one type of promising electrochemical technologies, high temperature proton exchange membrane fuel cells (HT-PEMFCs) have been widely recognized as the next-generation fuel cell technology for clean energy conversion due to their superiorities of fast electrochemical kinetics, simplified water management, good tolerance to feeding gas contaminants, low emission and high efficiency of energy conversion. However, performance failure during long-term operation still largely hinders their practical application. Accordingly, the explorations of advanced materials and structures, degradation mechanisms and mitigation strategies are attracting intensive attentions for promoting the progress of this technology. In addressing the timely update on the emerging progress regrading long-term durability of HT-PEMFCs, a comprehensive review summarizing the most recent developments of performance failure mechanisms and mitigation strategies for critical components of HT-PEMFCs is presented here. In this paper, the fundamentals involving basic reactions, main components, and development history are first summarized for fundamental understanding; then, the failure analysis and the corresponding mitigation strategies for critical components involving proton exchange membrane, catalytic layer, gas diffusion layer, bipolar plate, and thermal/water management systems are mainly emphasized. Furthermore, the technical challenges are analyzed and the further research directions are also proposed for overcoming the challenges toward practical application of HT-PEMFCs.</div></div>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance failure mechanisms and mitigation strategies of high-temperature proton exchange membrane fuel cells\",\"authors\":\"Shufan Wang, Yun Zheng, Chenhui Xv, Haishan Liu, Lingfei Li, Wei Yan, Jiujun Zhang\",\"doi\":\"10.1016/j.pmatsci.2024.101389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As one type of promising electrochemical technologies, high temperature proton exchange membrane fuel cells (HT-PEMFCs) have been widely recognized as the next-generation fuel cell technology for clean energy conversion due to their superiorities of fast electrochemical kinetics, simplified water management, good tolerance to feeding gas contaminants, low emission and high efficiency of energy conversion. However, performance failure during long-term operation still largely hinders their practical application. Accordingly, the explorations of advanced materials and structures, degradation mechanisms and mitigation strategies are attracting intensive attentions for promoting the progress of this technology. In addressing the timely update on the emerging progress regrading long-term durability of HT-PEMFCs, a comprehensive review summarizing the most recent developments of performance failure mechanisms and mitigation strategies for critical components of HT-PEMFCs is presented here. In this paper, the fundamentals involving basic reactions, main components, and development history are first summarized for fundamental understanding; then, the failure analysis and the corresponding mitigation strategies for critical components involving proton exchange membrane, catalytic layer, gas diffusion layer, bipolar plate, and thermal/water management systems are mainly emphasized. Furthermore, the technical challenges are analyzed and the further research directions are also proposed for overcoming the challenges toward practical application of HT-PEMFCs.</div></div>\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079642524001580\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524001580","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Performance failure mechanisms and mitigation strategies of high-temperature proton exchange membrane fuel cells
As one type of promising electrochemical technologies, high temperature proton exchange membrane fuel cells (HT-PEMFCs) have been widely recognized as the next-generation fuel cell technology for clean energy conversion due to their superiorities of fast electrochemical kinetics, simplified water management, good tolerance to feeding gas contaminants, low emission and high efficiency of energy conversion. However, performance failure during long-term operation still largely hinders their practical application. Accordingly, the explorations of advanced materials and structures, degradation mechanisms and mitigation strategies are attracting intensive attentions for promoting the progress of this technology. In addressing the timely update on the emerging progress regrading long-term durability of HT-PEMFCs, a comprehensive review summarizing the most recent developments of performance failure mechanisms and mitigation strategies for critical components of HT-PEMFCs is presented here. In this paper, the fundamentals involving basic reactions, main components, and development history are first summarized for fundamental understanding; then, the failure analysis and the corresponding mitigation strategies for critical components involving proton exchange membrane, catalytic layer, gas diffusion layer, bipolar plate, and thermal/water management systems are mainly emphasized. Furthermore, the technical challenges are analyzed and the further research directions are also proposed for overcoming the challenges toward practical application of HT-PEMFCs.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.