S. Ridolfo , X. Querol , A. Karanasiou , A. Rodríguez-Luque , N. Pérez , A. Alastuey , C. Jaén , B.L. van Drooge , M. Pandolfi , M. Pedrero , F. Amato
{"title":"西班牙巴塞罗那-埃尔普拉特机场超细颗粒的粒度分布、来源和化学性质","authors":"S. Ridolfo , X. Querol , A. Karanasiou , A. Rodríguez-Luque , N. Pérez , A. Alastuey , C. Jaén , B.L. van Drooge , M. Pandolfi , M. Pedrero , F. Amato","doi":"10.1016/j.envint.2024.109057","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid expansion of the aviation sector raises concerns about air quality impacts within and around airports. Ultrafine particles (UFP, diameter < 100 nm) are of particular concern due to their potential adverse health effects. In this study, particle number concentrations (PNC), particle number size distribution (PNSD), and other ancillary pollutants such as particulate matter (PM), nitrogen oxides (NO<sub>X</sub>), black carbon (BC), sulfur dioxide (SO<sub>2</sub>), ozone (O<sub>3</sub>), carbon monoxide (CO) and benzene, as well as organic markers and trace elements (in quasi-UFP) were measured at Barcelona-El Prat Airport (80 m and 250 m from the main taxiway and runway). Comparisons were made with an urban background (UB) location, and source apportionment of PNSD was performed using Positive Matrix Factorization (PMF). PNC inside the airport was nine-fold higher than the UB, and fifteen-fold higher when considering only nucleation mode particles (< 25 nm). Six sources contributing to PNC were identified inside the airport: Taxiing (48.7 %; mode diameter = 17 nm), Industrial/Shipping (7.4 %; mode diameter = 35 nm), Diesel (3.9 %; mode diameter = 64 nm), Regional recirculation (1.1 %; mode diameter = 100 nm), Photonucleation (16.6 %; mode diameter = 13 nm) and Takeoff (18.5 %; mode diameter = 23 nm). Due to the measurement location and prevailing wind patterns, no significant contributions from landings were detected. Chemical analysis of quasi-UFP collected on Electrical Low-Pressure Impactor (ELPI + ) filters (stages 2 to 6: 17–165 nm) revealed higher concentrations (> 2-fold) of Fe, Al, Cr, Cu, Mo, Mn, Pb, Ti, and Sb at the airport compared to the UB, with Al exhibiting the most pronounced disparity. Generally, PAH levels were low at both sites, although concentrations were higher at the airport relative to the UB. Overall, this study provides a comprehensive understanding of UFP within a major European airport, identifying the different sources contributing to PNC and PNSD.</div></div>","PeriodicalId":308,"journal":{"name":"Environment International","volume":"193 ","pages":"Article 109057"},"PeriodicalIF":10.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size distribution, sources and chemistry of ultrafine particles at Barcelona-El Prat Airport, Spain\",\"authors\":\"S. Ridolfo , X. Querol , A. Karanasiou , A. Rodríguez-Luque , N. Pérez , A. Alastuey , C. Jaén , B.L. van Drooge , M. Pandolfi , M. Pedrero , F. Amato\",\"doi\":\"10.1016/j.envint.2024.109057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid expansion of the aviation sector raises concerns about air quality impacts within and around airports. Ultrafine particles (UFP, diameter < 100 nm) are of particular concern due to their potential adverse health effects. In this study, particle number concentrations (PNC), particle number size distribution (PNSD), and other ancillary pollutants such as particulate matter (PM), nitrogen oxides (NO<sub>X</sub>), black carbon (BC), sulfur dioxide (SO<sub>2</sub>), ozone (O<sub>3</sub>), carbon monoxide (CO) and benzene, as well as organic markers and trace elements (in quasi-UFP) were measured at Barcelona-El Prat Airport (80 m and 250 m from the main taxiway and runway). Comparisons were made with an urban background (UB) location, and source apportionment of PNSD was performed using Positive Matrix Factorization (PMF). PNC inside the airport was nine-fold higher than the UB, and fifteen-fold higher when considering only nucleation mode particles (< 25 nm). Six sources contributing to PNC were identified inside the airport: Taxiing (48.7 %; mode diameter = 17 nm), Industrial/Shipping (7.4 %; mode diameter = 35 nm), Diesel (3.9 %; mode diameter = 64 nm), Regional recirculation (1.1 %; mode diameter = 100 nm), Photonucleation (16.6 %; mode diameter = 13 nm) and Takeoff (18.5 %; mode diameter = 23 nm). Due to the measurement location and prevailing wind patterns, no significant contributions from landings were detected. Chemical analysis of quasi-UFP collected on Electrical Low-Pressure Impactor (ELPI + ) filters (stages 2 to 6: 17–165 nm) revealed higher concentrations (> 2-fold) of Fe, Al, Cr, Cu, Mo, Mn, Pb, Ti, and Sb at the airport compared to the UB, with Al exhibiting the most pronounced disparity. Generally, PAH levels were low at both sites, although concentrations were higher at the airport relative to the UB. Overall, this study provides a comprehensive understanding of UFP within a major European airport, identifying the different sources contributing to PNC and PNSD.</div></div>\",\"PeriodicalId\":308,\"journal\":{\"name\":\"Environment International\",\"volume\":\"193 \",\"pages\":\"Article 109057\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment International\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0160412024006433\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160412024006433","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Size distribution, sources and chemistry of ultrafine particles at Barcelona-El Prat Airport, Spain
The rapid expansion of the aviation sector raises concerns about air quality impacts within and around airports. Ultrafine particles (UFP, diameter < 100 nm) are of particular concern due to their potential adverse health effects. In this study, particle number concentrations (PNC), particle number size distribution (PNSD), and other ancillary pollutants such as particulate matter (PM), nitrogen oxides (NOX), black carbon (BC), sulfur dioxide (SO2), ozone (O3), carbon monoxide (CO) and benzene, as well as organic markers and trace elements (in quasi-UFP) were measured at Barcelona-El Prat Airport (80 m and 250 m from the main taxiway and runway). Comparisons were made with an urban background (UB) location, and source apportionment of PNSD was performed using Positive Matrix Factorization (PMF). PNC inside the airport was nine-fold higher than the UB, and fifteen-fold higher when considering only nucleation mode particles (< 25 nm). Six sources contributing to PNC were identified inside the airport: Taxiing (48.7 %; mode diameter = 17 nm), Industrial/Shipping (7.4 %; mode diameter = 35 nm), Diesel (3.9 %; mode diameter = 64 nm), Regional recirculation (1.1 %; mode diameter = 100 nm), Photonucleation (16.6 %; mode diameter = 13 nm) and Takeoff (18.5 %; mode diameter = 23 nm). Due to the measurement location and prevailing wind patterns, no significant contributions from landings were detected. Chemical analysis of quasi-UFP collected on Electrical Low-Pressure Impactor (ELPI + ) filters (stages 2 to 6: 17–165 nm) revealed higher concentrations (> 2-fold) of Fe, Al, Cr, Cu, Mo, Mn, Pb, Ti, and Sb at the airport compared to the UB, with Al exhibiting the most pronounced disparity. Generally, PAH levels were low at both sites, although concentrations were higher at the airport relative to the UB. Overall, this study provides a comprehensive understanding of UFP within a major European airport, identifying the different sources contributing to PNC and PNSD.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.