Wenjie Lai , Weian Zhu , Jianjie Wu , Jiongduan Huang , Xiaojuan Li , Yun Luo , Yu Wang , Hengda Zeng , Mingqiang Li , Xiaofu Qiu , Xingqiao Wen
{"title":"HJURP 通过增强 PRDX1 的过氧化物酶活性来抑制前列腺癌细胞对铁变态诱导剂的敏感性","authors":"Wenjie Lai , Weian Zhu , Jianjie Wu , Jiongduan Huang , Xiaojuan Li , Yun Luo , Yu Wang , Hengda Zeng , Mingqiang Li , Xiaofu Qiu , Xingqiao Wen","doi":"10.1016/j.redox.2024.103392","DOIUrl":null,"url":null,"abstract":"<div><div>Ferroptosis induction has emerged as a promising therapeutic approach for prostate cancer (PCa), either as a monotherapy or in combination with hormone therapy. Therefore, identifying the mechanisms regulating ferroptosis in PCa cells is essential. Our previous study demonstrated that HJURP, an oncogene upregulated in PCa cells, plays a role in tumor proliferation. Here, we expand these findings by elucidating a novel mechanism by which HJURP inhibits sensitivity to ferroptosis inducers in PCa cells via the PRDX1/reactive oxygen species (ROS) pathway <em>in vitro</em> and <em>in vivo</em>. Mechanistically, HJURP forms disulfide-linked intermediates with PRDX1 through Cys<sup>327</sup> and Cys<sup>457</sup> residues. This disulfide binding promotes PRDX1 redox cycling and inhibits its hyperoxidation. As a result, HJURP enhances the peroxidase activity of PRDX1, leading to a decrease in ROS levels and subsequently suppressing lipid peroxidation induced by ferroptosis inducers. These findings reveal the potential of HJURP/PRDX1 as novel therapeutic targets and biomarkers of ferroptosis in PCa patients.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"77 ","pages":"Article 103392"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HJURP inhibits sensitivity to ferroptosis inducers in prostate cancer cells by enhancing the peroxidase activity of PRDX1\",\"authors\":\"Wenjie Lai , Weian Zhu , Jianjie Wu , Jiongduan Huang , Xiaojuan Li , Yun Luo , Yu Wang , Hengda Zeng , Mingqiang Li , Xiaofu Qiu , Xingqiao Wen\",\"doi\":\"10.1016/j.redox.2024.103392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ferroptosis induction has emerged as a promising therapeutic approach for prostate cancer (PCa), either as a monotherapy or in combination with hormone therapy. Therefore, identifying the mechanisms regulating ferroptosis in PCa cells is essential. Our previous study demonstrated that HJURP, an oncogene upregulated in PCa cells, plays a role in tumor proliferation. Here, we expand these findings by elucidating a novel mechanism by which HJURP inhibits sensitivity to ferroptosis inducers in PCa cells via the PRDX1/reactive oxygen species (ROS) pathway <em>in vitro</em> and <em>in vivo</em>. Mechanistically, HJURP forms disulfide-linked intermediates with PRDX1 through Cys<sup>327</sup> and Cys<sup>457</sup> residues. This disulfide binding promotes PRDX1 redox cycling and inhibits its hyperoxidation. As a result, HJURP enhances the peroxidase activity of PRDX1, leading to a decrease in ROS levels and subsequently suppressing lipid peroxidation induced by ferroptosis inducers. These findings reveal the potential of HJURP/PRDX1 as novel therapeutic targets and biomarkers of ferroptosis in PCa patients.</div></div>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"77 \",\"pages\":\"Article 103392\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213231724003707\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231724003707","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
HJURP inhibits sensitivity to ferroptosis inducers in prostate cancer cells by enhancing the peroxidase activity of PRDX1
Ferroptosis induction has emerged as a promising therapeutic approach for prostate cancer (PCa), either as a monotherapy or in combination with hormone therapy. Therefore, identifying the mechanisms regulating ferroptosis in PCa cells is essential. Our previous study demonstrated that HJURP, an oncogene upregulated in PCa cells, plays a role in tumor proliferation. Here, we expand these findings by elucidating a novel mechanism by which HJURP inhibits sensitivity to ferroptosis inducers in PCa cells via the PRDX1/reactive oxygen species (ROS) pathway in vitro and in vivo. Mechanistically, HJURP forms disulfide-linked intermediates with PRDX1 through Cys327 and Cys457 residues. This disulfide binding promotes PRDX1 redox cycling and inhibits its hyperoxidation. As a result, HJURP enhances the peroxidase activity of PRDX1, leading to a decrease in ROS levels and subsequently suppressing lipid peroxidation induced by ferroptosis inducers. These findings reveal the potential of HJURP/PRDX1 as novel therapeutic targets and biomarkers of ferroptosis in PCa patients.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.