{"title":"通过微生物趋化作用提高纳米粒子导电性的表面温度和热流量效应","authors":"Nahid Fatima , Aaqib Majeed , Nouman Ijaz","doi":"10.1016/j.nanoso.2024.101374","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of the current investigations in to explore the three-dimensional magnetohydrodynamic (MHD) Oldroyd-B nanofluid flow over an exponential stretchable surface with variable thermal conductivity. Impact of thermal radiation and gyrotactic motile organism also incorporated in the present study. A fluid that has tiny particles, also referred to as nanoparticles, scattered throughout a base fluid is called a nanofluid. These nanoparticles can be formed from metals, oxides, carbon-based compounds, or other nanomaterials, and their usual sizes range from 1 to 100 nanometers. Water, oil, ethylene glycol, or other common liquids can be used as the foundation fluid. Because of their improved physical qualities, greater heat transfer, and thermal conductivity, nanofluids have many uses in a variety of sectors. Two type of boundary conditions are associated here like prescribed surface temperature (PST) and prescribed heat flux (PHF). Exploring nanoparticles influence on a fluid viscoelasticity, and vice versa, advanced understanding of three-dimensional nanofluid flow over a porous, stretchable surface. The research also probed microorganisms' and reactions' impact on heat/mass transfer. Employing MATLAB and a similarity approach converted Navier-Stokes equations into ordinary differential equations. Outcomes included velocity profile, temperature profiles, concentration profiles, and microbe behavior. Thus, this significantly contributed to modelling collectors and thermal storage. The concentration profile flattens when the Schmidt number <span><math><mrow><mo>(</mo><mi>Sc</mi><mo>)</mo></mrow></math></span> is increased, indicating that the fluid flow behavior is clearly influenced. Moreover, these findings established ways to improve energy systems' efficiency by elucidating heat transport and fluid flow parameters. This enables sustainable energy solutions to tackle global challenges. The influence of various convergence parameters is illustrated through graphically and in the form of table. Also, our results are validated with the previously published data and found tremendous agreement.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101374"},"PeriodicalIF":5.4500,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of prescribed surface temperature and heat flux with electrical conductivity via microbial chemotaxis to enhance nanoparticle\",\"authors\":\"Nahid Fatima , Aaqib Majeed , Nouman Ijaz\",\"doi\":\"10.1016/j.nanoso.2024.101374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The purpose of the current investigations in to explore the three-dimensional magnetohydrodynamic (MHD) Oldroyd-B nanofluid flow over an exponential stretchable surface with variable thermal conductivity. Impact of thermal radiation and gyrotactic motile organism also incorporated in the present study. A fluid that has tiny particles, also referred to as nanoparticles, scattered throughout a base fluid is called a nanofluid. These nanoparticles can be formed from metals, oxides, carbon-based compounds, or other nanomaterials, and their usual sizes range from 1 to 100 nanometers. Water, oil, ethylene glycol, or other common liquids can be used as the foundation fluid. Because of their improved physical qualities, greater heat transfer, and thermal conductivity, nanofluids have many uses in a variety of sectors. Two type of boundary conditions are associated here like prescribed surface temperature (PST) and prescribed heat flux (PHF). Exploring nanoparticles influence on a fluid viscoelasticity, and vice versa, advanced understanding of three-dimensional nanofluid flow over a porous, stretchable surface. The research also probed microorganisms' and reactions' impact on heat/mass transfer. Employing MATLAB and a similarity approach converted Navier-Stokes equations into ordinary differential equations. Outcomes included velocity profile, temperature profiles, concentration profiles, and microbe behavior. Thus, this significantly contributed to modelling collectors and thermal storage. The concentration profile flattens when the Schmidt number <span><math><mrow><mo>(</mo><mi>Sc</mi><mo>)</mo></mrow></math></span> is increased, indicating that the fluid flow behavior is clearly influenced. Moreover, these findings established ways to improve energy systems' efficiency by elucidating heat transport and fluid flow parameters. This enables sustainable energy solutions to tackle global challenges. The influence of various convergence parameters is illustrated through graphically and in the form of table. Also, our results are validated with the previously published data and found tremendous agreement.</div></div>\",\"PeriodicalId\":397,\"journal\":{\"name\":\"Nano-Structures & Nano-Objects\",\"volume\":\"40 \",\"pages\":\"Article 101374\"},\"PeriodicalIF\":5.4500,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Structures & Nano-Objects\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352507X24002865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24002865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Effects of prescribed surface temperature and heat flux with electrical conductivity via microbial chemotaxis to enhance nanoparticle
The purpose of the current investigations in to explore the three-dimensional magnetohydrodynamic (MHD) Oldroyd-B nanofluid flow over an exponential stretchable surface with variable thermal conductivity. Impact of thermal radiation and gyrotactic motile organism also incorporated in the present study. A fluid that has tiny particles, also referred to as nanoparticles, scattered throughout a base fluid is called a nanofluid. These nanoparticles can be formed from metals, oxides, carbon-based compounds, or other nanomaterials, and their usual sizes range from 1 to 100 nanometers. Water, oil, ethylene glycol, or other common liquids can be used as the foundation fluid. Because of their improved physical qualities, greater heat transfer, and thermal conductivity, nanofluids have many uses in a variety of sectors. Two type of boundary conditions are associated here like prescribed surface temperature (PST) and prescribed heat flux (PHF). Exploring nanoparticles influence on a fluid viscoelasticity, and vice versa, advanced understanding of three-dimensional nanofluid flow over a porous, stretchable surface. The research also probed microorganisms' and reactions' impact on heat/mass transfer. Employing MATLAB and a similarity approach converted Navier-Stokes equations into ordinary differential equations. Outcomes included velocity profile, temperature profiles, concentration profiles, and microbe behavior. Thus, this significantly contributed to modelling collectors and thermal storage. The concentration profile flattens when the Schmidt number is increased, indicating that the fluid flow behavior is clearly influenced. Moreover, these findings established ways to improve energy systems' efficiency by elucidating heat transport and fluid flow parameters. This enables sustainable energy solutions to tackle global challenges. The influence of various convergence parameters is illustrated through graphically and in the form of table. Also, our results are validated with the previously published data and found tremendous agreement.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .