用于高光谱非混合的深度双向分层矩阵因式分解模型

IF 4.4 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Applied Mathematical Modelling Pub Date : 2024-10-03 DOI:10.1016/j.apm.2024.115736
{"title":"用于高光谱非混合的深度双向分层矩阵因式分解模型","authors":"","doi":"10.1016/j.apm.2024.115736","DOIUrl":null,"url":null,"abstract":"<div><div>Existing deep nonnegative matrix factorization-based approaches treat shallow and deep layers equally or with similar strategies, neglecting the heterogeneous physical structures between the shallow and progressively deeper layers, thus failing to explore the latent different sub-manifold structures in the hyperspectral image. In this paper, we propose a deep nonnegative matrix factorization model with bidirectional constraints to achieve hyperspectral unmixing. The sub-manifold structures in hyperspectral image are fully exploited by filtering and penalizing the shallow abundance layer with a denoised regularizer and a manifold regularizer. In contrast to the shallow abundance layer, the remaining layers are constrained by an extremely common regularizer to avoid over-denoising and maintain fidelity. In this way, the fine cues between different substances are exploited to a large extent. Additionally, the overall reconstruction error can be well controlled because the performance of the designed feedback mechanism can be fine-tuned by the inverse hierarchical constraints. Finally, we employ Nesterov's optimal gradient method to solve the optimization problem effectively. Experiment results are conducted on both synthetic datasets and real datasets, and all results show that the proposed method is superior to recent canonical unmixing methods.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep bidirectional hierarchical matrix factorization model for hyperspectral unmixing\",\"authors\":\"\",\"doi\":\"10.1016/j.apm.2024.115736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Existing deep nonnegative matrix factorization-based approaches treat shallow and deep layers equally or with similar strategies, neglecting the heterogeneous physical structures between the shallow and progressively deeper layers, thus failing to explore the latent different sub-manifold structures in the hyperspectral image. In this paper, we propose a deep nonnegative matrix factorization model with bidirectional constraints to achieve hyperspectral unmixing. The sub-manifold structures in hyperspectral image are fully exploited by filtering and penalizing the shallow abundance layer with a denoised regularizer and a manifold regularizer. In contrast to the shallow abundance layer, the remaining layers are constrained by an extremely common regularizer to avoid over-denoising and maintain fidelity. In this way, the fine cues between different substances are exploited to a large extent. Additionally, the overall reconstruction error can be well controlled because the performance of the designed feedback mechanism can be fine-tuned by the inverse hierarchical constraints. Finally, we employ Nesterov's optimal gradient method to solve the optimization problem effectively. Experiment results are conducted on both synthetic datasets and real datasets, and all results show that the proposed method is superior to recent canonical unmixing methods.</div></div>\",\"PeriodicalId\":50980,\"journal\":{\"name\":\"Applied Mathematical Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0307904X2400489X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X2400489X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

现有的基于深度非负矩阵因式分解的方法对浅层和深层一视同仁或采用类似的策略,忽略了浅层和渐深层之间的异质物理结构,因此无法探索高光谱图像中潜在的不同子芒格结构。本文提出了一种具有双向约束的深度非负矩阵因式分解模型,以实现高光谱解混。通过使用去噪正则和流形正则对浅丰度层进行过滤和惩罚,充分利用了高光谱图像中的子流形结构。与浅丰度层不同的是,其余各层受限于一个极其普通的正则器,以避免过度去噪并保持保真度。这样,不同物质之间的细微线索就能得到充分利用。此外,由于所设计的反馈机制的性能可以通过反分层约束进行微调,因此整体重建误差可以得到很好的控制。最后,我们采用涅斯捷罗夫最优梯度法有效地解决了优化问题。实验结果在合成数据集和真实数据集上都进行了验证,所有结果都表明所提出的方法优于最新的典型解混方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep bidirectional hierarchical matrix factorization model for hyperspectral unmixing
Existing deep nonnegative matrix factorization-based approaches treat shallow and deep layers equally or with similar strategies, neglecting the heterogeneous physical structures between the shallow and progressively deeper layers, thus failing to explore the latent different sub-manifold structures in the hyperspectral image. In this paper, we propose a deep nonnegative matrix factorization model with bidirectional constraints to achieve hyperspectral unmixing. The sub-manifold structures in hyperspectral image are fully exploited by filtering and penalizing the shallow abundance layer with a denoised regularizer and a manifold regularizer. In contrast to the shallow abundance layer, the remaining layers are constrained by an extremely common regularizer to avoid over-denoising and maintain fidelity. In this way, the fine cues between different substances are exploited to a large extent. Additionally, the overall reconstruction error can be well controlled because the performance of the designed feedback mechanism can be fine-tuned by the inverse hierarchical constraints. Finally, we employ Nesterov's optimal gradient method to solve the optimization problem effectively. Experiment results are conducted on both synthetic datasets and real datasets, and all results show that the proposed method is superior to recent canonical unmixing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Modelling
Applied Mathematical Modelling 数学-工程:综合
CiteScore
9.80
自引率
8.00%
发文量
508
审稿时长
43 days
期刊介绍: Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged. This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering. Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.
期刊最新文献
A data-driven approach for estimating functions in a multivariate nonparametric regression model based on B-splines with an application to geoscience Spatially adaptive oscillation total generalized variation for image restoration with structured textures Adaptive control scheme for cooperative transport systems navigation under uncertainty Modeling salmonellosis transmission dynamics in humans and dairy cattle with optimal controls Orthogonality-projection-based penalized variable selection for high-dimensional partially linear models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1