Chenglong Jiang , Yajing Liu , Lingling Zeng , Chengshun Xu , Peng Cao
{"title":"结合柔性膜边界使用离散元法研究致密颗粒材料的临界状态唯一性","authors":"Chenglong Jiang , Yajing Liu , Lingling Zeng , Chengshun Xu , Peng Cao","doi":"10.1016/j.partic.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>An explanation of the meso-mechanism of sand granular materials for the uniqueness of critical state is presented by means of the discrete element method (DEM) under flexible boundary loading conditions. A series triaxial drainage shear test (DEM simulations), in conjunction with the flexible boundary technique, of were performed for sand samples subjected to various physical states and with different particle size distributions. After carefully investigating the critical status of the results of the numerical calculation, the macroscopic failure modes and shear band evolution of sand, as well as the velocity vector field due to different initial states, were explored and classified. Furthermore, the evaluation rules and discrepancies between overall void ratios of the specimen and local void ratios within the shear band under the critical state were recorded and analyzed. The results proved that a sample with a small void tends to form a shear band, and the rotation of the particles in the non-shear zone is negligible. Conversely, sandy soil with large initial void ratios exhibited limited development of significant shear bands, and the change in void ratios within the shear region and the non-shear area are not significant. Interestingly, the particle-size distribution exerts minimal influence on the evolution rule which the void ratio converges within the shear band and diverges outside the shear region for both multi-stage and single-stage specimens. The void ratio within the shear band and deviator stress ratio tend to exhibit consistently for the same specimen with different initial physical states, thereby distinguishing the critical state. There is a significantly higher change in void ratio within the shear band compared to outside of it, yet it remains stable within a relatively similar range. Additionally, the invariant of the fabric tensor used to describe the critical state characteristics also demonstrates a high degree of consistency within the shear band. These findings strongly indicate that the critical state exists within the shear failure surface and is highly likely to be unique.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"95 ","pages":"Pages 124-144"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical state uniqueness of dense granular materials using discrete element method in conjunction with flexible membrane boundary\",\"authors\":\"Chenglong Jiang , Yajing Liu , Lingling Zeng , Chengshun Xu , Peng Cao\",\"doi\":\"10.1016/j.partic.2024.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An explanation of the meso-mechanism of sand granular materials for the uniqueness of critical state is presented by means of the discrete element method (DEM) under flexible boundary loading conditions. A series triaxial drainage shear test (DEM simulations), in conjunction with the flexible boundary technique, of were performed for sand samples subjected to various physical states and with different particle size distributions. After carefully investigating the critical status of the results of the numerical calculation, the macroscopic failure modes and shear band evolution of sand, as well as the velocity vector field due to different initial states, were explored and classified. Furthermore, the evaluation rules and discrepancies between overall void ratios of the specimen and local void ratios within the shear band under the critical state were recorded and analyzed. The results proved that a sample with a small void tends to form a shear band, and the rotation of the particles in the non-shear zone is negligible. Conversely, sandy soil with large initial void ratios exhibited limited development of significant shear bands, and the change in void ratios within the shear region and the non-shear area are not significant. Interestingly, the particle-size distribution exerts minimal influence on the evolution rule which the void ratio converges within the shear band and diverges outside the shear region for both multi-stage and single-stage specimens. The void ratio within the shear band and deviator stress ratio tend to exhibit consistently for the same specimen with different initial physical states, thereby distinguishing the critical state. There is a significantly higher change in void ratio within the shear band compared to outside of it, yet it remains stable within a relatively similar range. Additionally, the invariant of the fabric tensor used to describe the critical state characteristics also demonstrates a high degree of consistency within the shear band. These findings strongly indicate that the critical state exists within the shear failure surface and is highly likely to be unique.</div></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"95 \",\"pages\":\"Pages 124-144\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200124001809\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001809","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Critical state uniqueness of dense granular materials using discrete element method in conjunction with flexible membrane boundary
An explanation of the meso-mechanism of sand granular materials for the uniqueness of critical state is presented by means of the discrete element method (DEM) under flexible boundary loading conditions. A series triaxial drainage shear test (DEM simulations), in conjunction with the flexible boundary technique, of were performed for sand samples subjected to various physical states and with different particle size distributions. After carefully investigating the critical status of the results of the numerical calculation, the macroscopic failure modes and shear band evolution of sand, as well as the velocity vector field due to different initial states, were explored and classified. Furthermore, the evaluation rules and discrepancies between overall void ratios of the specimen and local void ratios within the shear band under the critical state were recorded and analyzed. The results proved that a sample with a small void tends to form a shear band, and the rotation of the particles in the non-shear zone is negligible. Conversely, sandy soil with large initial void ratios exhibited limited development of significant shear bands, and the change in void ratios within the shear region and the non-shear area are not significant. Interestingly, the particle-size distribution exerts minimal influence on the evolution rule which the void ratio converges within the shear band and diverges outside the shear region for both multi-stage and single-stage specimens. The void ratio within the shear band and deviator stress ratio tend to exhibit consistently for the same specimen with different initial physical states, thereby distinguishing the critical state. There is a significantly higher change in void ratio within the shear band compared to outside of it, yet it remains stable within a relatively similar range. Additionally, the invariant of the fabric tensor used to describe the critical state characteristics also demonstrates a high degree of consistency within the shear band. These findings strongly indicate that the critical state exists within the shear failure surface and is highly likely to be unique.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.