Luiza Bielecka , Violetta Drozdowska , Ilona Złoch , Daniel Rak , Vadim Pelevin , Ekaterina Koltsova
{"title":"波罗的海表层水的生物和光学特性以及海陆相互作用--寻找相互依存关系","authors":"Luiza Bielecka , Violetta Drozdowska , Ilona Złoch , Daniel Rak , Vadim Pelevin , Ekaterina Koltsova","doi":"10.1016/j.ecss.2024.108970","DOIUrl":null,"url":null,"abstract":"<div><div>In June 2015, aboard the r/v Akademik Ioffe, a study was conducted on the surface zooplankton community in selected Baltic Sea basins along the Arkona Basin - Gulf of Gdansk route. Samples were collected using a 100 μm mesh plankton net at depths of 2–0 m. Additionally, optical and physical properties were assessed through remote (lidar) and in-situ (CTD and surface microlayer seawater sampling) measurements to provide a foundation for biological analysis.</div><div>The zooplankton included 19 taxa from holoplanktonic Copepoda, Diplostraca, Rotifera, and meroplanktonic stages of Bivalvia, Gastropoda, Polychaeta, Cirripedia, and Pisces. Zooplankton abundance ranged from 37399 ind. m<sup>−3</sup> (Slupsk Furrow) to 267744 ind. m<sup>−3</sup> (Bornholm Basin), with copepods being the most numerous groups. While the zooplankton community composition was relatively stable across the study area, their distribution varied. The most diverse station was Slupsk Furrow, with Copepoda, Diplostraca, Rotifera, and meroplankton making up approximately 40%, 25%, 20%, and 5%, respectively. In contrast, Bornholm Basin had the highest zooplankton numbers, mainly dominated by copepods (90%) with minor contributions from other groups.</div><div>Fluorescence properties of surface microlayer organic matter were assessed by measuring the intensity ratio of the primary fluorophores (A, C, M, and T) of dissolved organic matter molecules, represented as (M + T)/(A + C). This indicated a mixed marine-terrestrial nature of organic matter in stations west of the Slupsk Furrow. Stations at the Arkona Basin and the Slupsk Furrow had the highest ratio values, suggesting a significant marine organic matter source. In contrast, stations east of the Slupsk Furrow exhibited lower (M + T)/(A + C) ratios, indicating a dominant terrestrial origin for organic matter. Lidar results further supported the division of the study area into two regions based on bio-optical properties: a western region (Arkona Basin, Bornholm Basin, and Slupsk Furrow) and an eastern region (Gotland Basin and Gdansk Basin). Moreover, the variability in zooplankton community structure and distribution is closely correlated with the water hydrographic and optical characteristics. We can therefore conclude that all the water properties that we have studied are a derivative of the interaction of sea and land.</div></div>","PeriodicalId":50497,"journal":{"name":"Estuarine Coastal and Shelf Science","volume":"309 ","pages":"Article 108970"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological and optical properties of Baltic surface waters and sea-land interaction – searching for interdependencies\",\"authors\":\"Luiza Bielecka , Violetta Drozdowska , Ilona Złoch , Daniel Rak , Vadim Pelevin , Ekaterina Koltsova\",\"doi\":\"10.1016/j.ecss.2024.108970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In June 2015, aboard the r/v Akademik Ioffe, a study was conducted on the surface zooplankton community in selected Baltic Sea basins along the Arkona Basin - Gulf of Gdansk route. Samples were collected using a 100 μm mesh plankton net at depths of 2–0 m. Additionally, optical and physical properties were assessed through remote (lidar) and in-situ (CTD and surface microlayer seawater sampling) measurements to provide a foundation for biological analysis.</div><div>The zooplankton included 19 taxa from holoplanktonic Copepoda, Diplostraca, Rotifera, and meroplanktonic stages of Bivalvia, Gastropoda, Polychaeta, Cirripedia, and Pisces. Zooplankton abundance ranged from 37399 ind. m<sup>−3</sup> (Slupsk Furrow) to 267744 ind. m<sup>−3</sup> (Bornholm Basin), with copepods being the most numerous groups. While the zooplankton community composition was relatively stable across the study area, their distribution varied. The most diverse station was Slupsk Furrow, with Copepoda, Diplostraca, Rotifera, and meroplankton making up approximately 40%, 25%, 20%, and 5%, respectively. In contrast, Bornholm Basin had the highest zooplankton numbers, mainly dominated by copepods (90%) with minor contributions from other groups.</div><div>Fluorescence properties of surface microlayer organic matter were assessed by measuring the intensity ratio of the primary fluorophores (A, C, M, and T) of dissolved organic matter molecules, represented as (M + T)/(A + C). This indicated a mixed marine-terrestrial nature of organic matter in stations west of the Slupsk Furrow. Stations at the Arkona Basin and the Slupsk Furrow had the highest ratio values, suggesting a significant marine organic matter source. In contrast, stations east of the Slupsk Furrow exhibited lower (M + T)/(A + C) ratios, indicating a dominant terrestrial origin for organic matter. Lidar results further supported the division of the study area into two regions based on bio-optical properties: a western region (Arkona Basin, Bornholm Basin, and Slupsk Furrow) and an eastern region (Gotland Basin and Gdansk Basin). Moreover, the variability in zooplankton community structure and distribution is closely correlated with the water hydrographic and optical characteristics. We can therefore conclude that all the water properties that we have studied are a derivative of the interaction of sea and land.</div></div>\",\"PeriodicalId\":50497,\"journal\":{\"name\":\"Estuarine Coastal and Shelf Science\",\"volume\":\"309 \",\"pages\":\"Article 108970\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Estuarine Coastal and Shelf Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0272771424003585\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuarine Coastal and Shelf Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272771424003585","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Biological and optical properties of Baltic surface waters and sea-land interaction – searching for interdependencies
In June 2015, aboard the r/v Akademik Ioffe, a study was conducted on the surface zooplankton community in selected Baltic Sea basins along the Arkona Basin - Gulf of Gdansk route. Samples were collected using a 100 μm mesh plankton net at depths of 2–0 m. Additionally, optical and physical properties were assessed through remote (lidar) and in-situ (CTD and surface microlayer seawater sampling) measurements to provide a foundation for biological analysis.
The zooplankton included 19 taxa from holoplanktonic Copepoda, Diplostraca, Rotifera, and meroplanktonic stages of Bivalvia, Gastropoda, Polychaeta, Cirripedia, and Pisces. Zooplankton abundance ranged from 37399 ind. m−3 (Slupsk Furrow) to 267744 ind. m−3 (Bornholm Basin), with copepods being the most numerous groups. While the zooplankton community composition was relatively stable across the study area, their distribution varied. The most diverse station was Slupsk Furrow, with Copepoda, Diplostraca, Rotifera, and meroplankton making up approximately 40%, 25%, 20%, and 5%, respectively. In contrast, Bornholm Basin had the highest zooplankton numbers, mainly dominated by copepods (90%) with minor contributions from other groups.
Fluorescence properties of surface microlayer organic matter were assessed by measuring the intensity ratio of the primary fluorophores (A, C, M, and T) of dissolved organic matter molecules, represented as (M + T)/(A + C). This indicated a mixed marine-terrestrial nature of organic matter in stations west of the Slupsk Furrow. Stations at the Arkona Basin and the Slupsk Furrow had the highest ratio values, suggesting a significant marine organic matter source. In contrast, stations east of the Slupsk Furrow exhibited lower (M + T)/(A + C) ratios, indicating a dominant terrestrial origin for organic matter. Lidar results further supported the division of the study area into two regions based on bio-optical properties: a western region (Arkona Basin, Bornholm Basin, and Slupsk Furrow) and an eastern region (Gotland Basin and Gdansk Basin). Moreover, the variability in zooplankton community structure and distribution is closely correlated with the water hydrographic and optical characteristics. We can therefore conclude that all the water properties that we have studied are a derivative of the interaction of sea and land.
期刊介绍:
Estuarine, Coastal and Shelf Science is an international multidisciplinary journal devoted to the analysis of saline water phenomena ranging from the outer edge of the continental shelf to the upper limits of the tidal zone. The journal provides a unique forum, unifying the multidisciplinary approaches to the study of the oceanography of estuaries, coastal zones, and continental shelf seas. It features original research papers, review papers and short communications treating such disciplines as zoology, botany, geology, sedimentology, physical oceanography.