自动化膜表征:使用 3D 打印渗透探针装置现场监测渗透液和回流液

IF 4.9 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Letters Pub Date : 2024-09-28 DOI:10.1016/j.memlet.2024.100087
{"title":"自动化膜表征:使用 3D 打印渗透探针装置现场监测渗透液和回流液","authors":"","doi":"10.1016/j.memlet.2024.100087","DOIUrl":null,"url":null,"abstract":"<div><div>Self-driving laboratories and automated experiments can accelerate the design workflow and decrease errors associated with experiments that characterize membrane transport properties. Within this study, we use 3D printing to design a custom stirred cell that incorporates inline conductivity probes in the retentate and permeate streams. The probes provide a complete trajectory of the salt concentrations as they evolve over the course of an experiment. Here, automated diafiltration experiments are used to characterize the performance of commercial NF90 and NF270 polyamide membranes over a predetermined range of KCl concentrations from 1 to 100 mM. The measurements obtained by the inline conductivity probes are validated using offline post-experiment analyses. Compared to traditional filtration experiments, the probes decrease the amount of time required for an experimentalist to characterize membrane materials by more than 50× and increase the amount of information generated by 100×. Device design principles to address the physical constraints associated with making conductivity measurements in confined volumes are proposed. Overall, the device developed within this study provides a foundation to establish high-throughput, automated membrane characterization techniques.</div></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated membrane characterization: In-situ monitoring of the permeate and retentate solutions using a 3D printed permeate probe device\",\"authors\":\"\",\"doi\":\"10.1016/j.memlet.2024.100087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Self-driving laboratories and automated experiments can accelerate the design workflow and decrease errors associated with experiments that characterize membrane transport properties. Within this study, we use 3D printing to design a custom stirred cell that incorporates inline conductivity probes in the retentate and permeate streams. The probes provide a complete trajectory of the salt concentrations as they evolve over the course of an experiment. Here, automated diafiltration experiments are used to characterize the performance of commercial NF90 and NF270 polyamide membranes over a predetermined range of KCl concentrations from 1 to 100 mM. The measurements obtained by the inline conductivity probes are validated using offline post-experiment analyses. Compared to traditional filtration experiments, the probes decrease the amount of time required for an experimentalist to characterize membrane materials by more than 50× and increase the amount of information generated by 100×. Device design principles to address the physical constraints associated with making conductivity measurements in confined volumes are proposed. Overall, the device developed within this study provides a foundation to establish high-throughput, automated membrane characterization techniques.</div></div>\",\"PeriodicalId\":100805,\"journal\":{\"name\":\"Journal of Membrane Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772421224000217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421224000217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶实验室和自动化实验可以加快设计工作流程,减少与表征膜传输特性的实验相关的误差。在这项研究中,我们使用 3D 打印技术设计了一个定制的搅拌池,在回流液和渗透液中加入了在线电导探针。探针可提供盐浓度在实验过程中演变的完整轨迹。在这里,自动重滤实验用于鉴定商用 NF90 和 NF270 聚酰胺膜在 1 至 100 mM 氯化钾浓度预定范围内的性能。在线电导探头获得的测量结果通过离线实验后分析进行验证。与传统的过滤实验相比,该探头使实验人员表征膜材料所需的时间减少了 50 倍以上,所产生的信息量增加了 100 倍。针对在密闭体积内进行电导率测量的相关物理限制,提出了设备设计原则。总之,本研究开发的设备为建立高通量、自动化的膜表征技术奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated membrane characterization: In-situ monitoring of the permeate and retentate solutions using a 3D printed permeate probe device
Self-driving laboratories and automated experiments can accelerate the design workflow and decrease errors associated with experiments that characterize membrane transport properties. Within this study, we use 3D printing to design a custom stirred cell that incorporates inline conductivity probes in the retentate and permeate streams. The probes provide a complete trajectory of the salt concentrations as they evolve over the course of an experiment. Here, automated diafiltration experiments are used to characterize the performance of commercial NF90 and NF270 polyamide membranes over a predetermined range of KCl concentrations from 1 to 100 mM. The measurements obtained by the inline conductivity probes are validated using offline post-experiment analyses. Compared to traditional filtration experiments, the probes decrease the amount of time required for an experimentalist to characterize membrane materials by more than 50× and increase the amount of information generated by 100×. Device design principles to address the physical constraints associated with making conductivity measurements in confined volumes are proposed. Overall, the device developed within this study provides a foundation to establish high-throughput, automated membrane characterization techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
期刊最新文献
Automated membrane characterization: In-situ monitoring of the permeate and retentate solutions using a 3D printed permeate probe device Enhanced phosphate anion flux through single-ion, reverse-selective mixed-matrix cation exchange membrane Thermodynamic efficiency of membrane separation of dilute gas: Estimation for CO2 direct air capture application The solution-diffusion model: “Rumors of my death have been exaggerated” Incorporation of polyzwitterions in superabsorbent network membranes for enhanced saltwater absorption and retention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1