{"title":"利用开放的地理空间数据和深度学习,为现实的行人导航提供具有高程剖面的专门包容性道路数据集","authors":"Reza Hosseini , Samsung Lim , Daoqin Tong , Gunho Sohn , Seyedehsan Seyedabrishami","doi":"10.1016/j.compenvurbsys.2024.102199","DOIUrl":null,"url":null,"abstract":"<div><div>Built environment characteristics can greatly influence pedestrians' route choices with factors beyond distance, such as accessibility, convenience, safety, and aesthetics, playing crucial roles. Although current navigation apps, such as Google Maps and Waze, have successfully provided driving directions, their navigation services are insufficient and sometimes unrealistic for addressing pedestrians' needs, largely due to the lack of dedicated pedestrian networks and the associated navigation algorithms. To address the research gaps, this paper proposes a novel approach that integrates freely available geospatial data and computer vision technology to create a specialized inclusive network dataset for outdoor pedestrian navigation. Moreover, a pedestrian navigation algorithm is developed to generate more practical “shortest” and “alternative” paths by incorporating various sidewalk attributes. We applied the method to create a pedestrian navigation network in Las Vegas. SpaceNet's open imagery dataset was used to extract Las Vegas's road networks. A virtual audit process assessed the visual and operational properties of the sidewalk networks using Google street-level images, evaluating factors including sidewalk presence, widths, surface types and conditions, missing curb ramps, greenery, protection from weather conditions, and lighting. Google Earth's open elevation data were used to analyze road elevation profiles as meaningful 3D indicators of sidewalk accessibility for wheelchair users. Further, additional geometric properties of the network, including road curviness, proximity to road intersections, and directional changes, were detected and analyzed. A navigation experiment conducted with individuals having varying mobility abilities, including regular pedestrians, older adults, and wheelchair users demonstrated the effectiveness of the newly developed network and algorithm in meeting the diverse needs of pedestrians.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"114 ","pages":"Article 102199"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A specialized inclusive road dataset with elevation profiles for realistic pedestrian navigation using open geospatial data and deep learning\",\"authors\":\"Reza Hosseini , Samsung Lim , Daoqin Tong , Gunho Sohn , Seyedehsan Seyedabrishami\",\"doi\":\"10.1016/j.compenvurbsys.2024.102199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Built environment characteristics can greatly influence pedestrians' route choices with factors beyond distance, such as accessibility, convenience, safety, and aesthetics, playing crucial roles. Although current navigation apps, such as Google Maps and Waze, have successfully provided driving directions, their navigation services are insufficient and sometimes unrealistic for addressing pedestrians' needs, largely due to the lack of dedicated pedestrian networks and the associated navigation algorithms. To address the research gaps, this paper proposes a novel approach that integrates freely available geospatial data and computer vision technology to create a specialized inclusive network dataset for outdoor pedestrian navigation. Moreover, a pedestrian navigation algorithm is developed to generate more practical “shortest” and “alternative” paths by incorporating various sidewalk attributes. We applied the method to create a pedestrian navigation network in Las Vegas. SpaceNet's open imagery dataset was used to extract Las Vegas's road networks. A virtual audit process assessed the visual and operational properties of the sidewalk networks using Google street-level images, evaluating factors including sidewalk presence, widths, surface types and conditions, missing curb ramps, greenery, protection from weather conditions, and lighting. Google Earth's open elevation data were used to analyze road elevation profiles as meaningful 3D indicators of sidewalk accessibility for wheelchair users. Further, additional geometric properties of the network, including road curviness, proximity to road intersections, and directional changes, were detected and analyzed. A navigation experiment conducted with individuals having varying mobility abilities, including regular pedestrians, older adults, and wheelchair users demonstrated the effectiveness of the newly developed network and algorithm in meeting the diverse needs of pedestrians.</div></div>\",\"PeriodicalId\":48241,\"journal\":{\"name\":\"Computers Environment and Urban Systems\",\"volume\":\"114 \",\"pages\":\"Article 102199\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers Environment and Urban Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0198971524001285\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971524001285","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
A specialized inclusive road dataset with elevation profiles for realistic pedestrian navigation using open geospatial data and deep learning
Built environment characteristics can greatly influence pedestrians' route choices with factors beyond distance, such as accessibility, convenience, safety, and aesthetics, playing crucial roles. Although current navigation apps, such as Google Maps and Waze, have successfully provided driving directions, their navigation services are insufficient and sometimes unrealistic for addressing pedestrians' needs, largely due to the lack of dedicated pedestrian networks and the associated navigation algorithms. To address the research gaps, this paper proposes a novel approach that integrates freely available geospatial data and computer vision technology to create a specialized inclusive network dataset for outdoor pedestrian navigation. Moreover, a pedestrian navigation algorithm is developed to generate more practical “shortest” and “alternative” paths by incorporating various sidewalk attributes. We applied the method to create a pedestrian navigation network in Las Vegas. SpaceNet's open imagery dataset was used to extract Las Vegas's road networks. A virtual audit process assessed the visual and operational properties of the sidewalk networks using Google street-level images, evaluating factors including sidewalk presence, widths, surface types and conditions, missing curb ramps, greenery, protection from weather conditions, and lighting. Google Earth's open elevation data were used to analyze road elevation profiles as meaningful 3D indicators of sidewalk accessibility for wheelchair users. Further, additional geometric properties of the network, including road curviness, proximity to road intersections, and directional changes, were detected and analyzed. A navigation experiment conducted with individuals having varying mobility abilities, including regular pedestrians, older adults, and wheelchair users demonstrated the effectiveness of the newly developed network and algorithm in meeting the diverse needs of pedestrians.
期刊介绍:
Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.