Jianzhong Zhou , Yifan Wang , Huichen Luo , Guanghua Zhao , Jie Chen , Yingying Cui , Liangmo Wang , Qiang Gao , Xiaoyu Wang
{"title":"基于贝塞尔曲线的梁厚度分级辅助蜂窝的能量吸收","authors":"Jianzhong Zhou , Yifan Wang , Huichen Luo , Guanghua Zhao , Jie Chen , Yingying Cui , Liangmo Wang , Qiang Gao , Xiaoyu Wang","doi":"10.1016/j.ast.2024.109619","DOIUrl":null,"url":null,"abstract":"<div><div>In order to improve the energy absorption and lightweight of the structure, a novel auxetic honeycomb with graded beam thickness based on Bezier curve (BZH) is proposed on the basis of the double arrow negative Poisson ratio honeycomb. The finite element model of BZH under axial compression is established, and its accuracy is verified by experiments. Compared with a honeycomb of uniform beam thickness (DUH) of the same mass, the thickness of the beam becomes thicker in the middle and thinner on both sides, which causes the BZH to produce more plastic hinges when compressed, and the energy absorption is increased by 12 %. By parameter analysis of beam thickness distribution trend, the mechanical properties of BZH can be effectively controlled. A theoretical model of BZH under quasi-static compression is also established and the BZH configuration is optimized by proxy modeling technique and NSGA-II algorithm. The results show that the SEA of the optimized structure is increased from 5.23 kJ·kg<sup>-1</sup> to 6.17 kJ·kg<sup>-1</sup>, and the energy efficiency is reduced from 3.44 kN to 2.96 kN. Therefore, auxetic honeycomb with graded beam thickness based on Bezier curve has great potential in the field of energy absorption.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109619"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy absorption of auxetic honeycomb with graded beam thickness based on Bezier curve\",\"authors\":\"Jianzhong Zhou , Yifan Wang , Huichen Luo , Guanghua Zhao , Jie Chen , Yingying Cui , Liangmo Wang , Qiang Gao , Xiaoyu Wang\",\"doi\":\"10.1016/j.ast.2024.109619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In order to improve the energy absorption and lightweight of the structure, a novel auxetic honeycomb with graded beam thickness based on Bezier curve (BZH) is proposed on the basis of the double arrow negative Poisson ratio honeycomb. The finite element model of BZH under axial compression is established, and its accuracy is verified by experiments. Compared with a honeycomb of uniform beam thickness (DUH) of the same mass, the thickness of the beam becomes thicker in the middle and thinner on both sides, which causes the BZH to produce more plastic hinges when compressed, and the energy absorption is increased by 12 %. By parameter analysis of beam thickness distribution trend, the mechanical properties of BZH can be effectively controlled. A theoretical model of BZH under quasi-static compression is also established and the BZH configuration is optimized by proxy modeling technique and NSGA-II algorithm. The results show that the SEA of the optimized structure is increased from 5.23 kJ·kg<sup>-1</sup> to 6.17 kJ·kg<sup>-1</sup>, and the energy efficiency is reduced from 3.44 kN to 2.96 kN. Therefore, auxetic honeycomb with graded beam thickness based on Bezier curve has great potential in the field of energy absorption.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109619\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S127096382400748X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S127096382400748X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Energy absorption of auxetic honeycomb with graded beam thickness based on Bezier curve
In order to improve the energy absorption and lightweight of the structure, a novel auxetic honeycomb with graded beam thickness based on Bezier curve (BZH) is proposed on the basis of the double arrow negative Poisson ratio honeycomb. The finite element model of BZH under axial compression is established, and its accuracy is verified by experiments. Compared with a honeycomb of uniform beam thickness (DUH) of the same mass, the thickness of the beam becomes thicker in the middle and thinner on both sides, which causes the BZH to produce more plastic hinges when compressed, and the energy absorption is increased by 12 %. By parameter analysis of beam thickness distribution trend, the mechanical properties of BZH can be effectively controlled. A theoretical model of BZH under quasi-static compression is also established and the BZH configuration is optimized by proxy modeling technique and NSGA-II algorithm. The results show that the SEA of the optimized structure is increased from 5.23 kJ·kg-1 to 6.17 kJ·kg-1, and the energy efficiency is reduced from 3.44 kN to 2.96 kN. Therefore, auxetic honeycomb with graded beam thickness based on Bezier curve has great potential in the field of energy absorption.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.