通过响应面方法利用农业残留物生产纳米纤维素及其应用综述

Marjun C. Alvarado , Ma. Cristine Concepcion D. Ignacio , Ma. Camille G. Acabal , Anniver Ryan P. Lapuz , Kevin F. Yaptenco
{"title":"通过响应面方法利用农业残留物生产纳米纤维素及其应用综述","authors":"Marjun C. Alvarado ,&nbsp;Ma. Cristine Concepcion D. Ignacio ,&nbsp;Ma. Camille G. Acabal ,&nbsp;Anniver Ryan P. Lapuz ,&nbsp;Kevin F. Yaptenco","doi":"10.1016/j.nwnano.2024.100054","DOIUrl":null,"url":null,"abstract":"<div><div>Nanocellulose (NC) shows great potential across industries like food, pharmaceuticals, cosmetics, textiles, electronics, and construction. It can be sustainably extracted from agricultural residues using methods such as mechanical processes, acid hydrolysis, and bacterial biosynthesis. This review emphasizes the use of Response Surface Methodology (RSM) in optimizing NC extraction by examining variables like acid concentration, reaction time, and temperature. While RSM is effective, its assumptions of linear and quadratic relationships limit its accuracy in complex systems. Advanced techniques like artificial neural networks (ANN) offer a better alternative, capturing nonlinear relationships more effectively. However, ANN's application in NC extraction is underexplored, calling for future research to improve model precision. Expanding optimization to include response variables like thermal stability and surface charge is also essential for enhancing NC's industrial applications.</div></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"8 ","pages":"Article 100054"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on nanocellulose production from agricultural residue through response surface methodology and its applications\",\"authors\":\"Marjun C. Alvarado ,&nbsp;Ma. Cristine Concepcion D. Ignacio ,&nbsp;Ma. Camille G. Acabal ,&nbsp;Anniver Ryan P. Lapuz ,&nbsp;Kevin F. Yaptenco\",\"doi\":\"10.1016/j.nwnano.2024.100054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanocellulose (NC) shows great potential across industries like food, pharmaceuticals, cosmetics, textiles, electronics, and construction. It can be sustainably extracted from agricultural residues using methods such as mechanical processes, acid hydrolysis, and bacterial biosynthesis. This review emphasizes the use of Response Surface Methodology (RSM) in optimizing NC extraction by examining variables like acid concentration, reaction time, and temperature. While RSM is effective, its assumptions of linear and quadratic relationships limit its accuracy in complex systems. Advanced techniques like artificial neural networks (ANN) offer a better alternative, capturing nonlinear relationships more effectively. However, ANN's application in NC extraction is underexplored, calling for future research to improve model precision. Expanding optimization to include response variables like thermal stability and surface charge is also essential for enhancing NC's industrial applications.</div></div>\",\"PeriodicalId\":100942,\"journal\":{\"name\":\"Nano Trends\",\"volume\":\"8 \",\"pages\":\"Article 100054\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666978124000242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978124000242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米纤维素(NC)在食品、制药、化妆品、纺织、电子和建筑等行业显示出巨大的潜力。它可以通过机械加工、酸水解和细菌生物合成等方法从农业残留物中可持续地提取出来。本综述强调了响应面法(RSM)在优化数控萃取中的应用,具体方法是研究酸浓度、反应时间和温度等变量。虽然 RSM 很有效,但其线性和二次关系假设限制了其在复杂系统中的准确性。人工神经网络(ANN)等先进技术提供了更好的选择,能更有效地捕捉非线性关系。然而,人工神经网络在数控提取中的应用还未得到充分开发,这就要求我们在未来开展研究,以提高模型的精确度。扩大优化范围,将热稳定性和表面电荷等响应变量纳入其中,对于提高 NC 的工业应用也至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review on nanocellulose production from agricultural residue through response surface methodology and its applications
Nanocellulose (NC) shows great potential across industries like food, pharmaceuticals, cosmetics, textiles, electronics, and construction. It can be sustainably extracted from agricultural residues using methods such as mechanical processes, acid hydrolysis, and bacterial biosynthesis. This review emphasizes the use of Response Surface Methodology (RSM) in optimizing NC extraction by examining variables like acid concentration, reaction time, and temperature. While RSM is effective, its assumptions of linear and quadratic relationships limit its accuracy in complex systems. Advanced techniques like artificial neural networks (ANN) offer a better alternative, capturing nonlinear relationships more effectively. However, ANN's application in NC extraction is underexplored, calling for future research to improve model precision. Expanding optimization to include response variables like thermal stability and surface charge is also essential for enhancing NC's industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polymer and nanocomposite fillers as advanced materials in biomedical applications Novel therapy modalities combining photodynamic therapy and liposomal cisplatin for pancreatic cancer treatments Journey across extrinsic tactics for power improvements of triboelectric energy harvesting beyond intrinsic materials and device structures: A concise review Tailoring the shell structures in core-shell metal nanostructures for improved catalytic reduction of nitroaromatics Unraveling the laser decal transfer-based printing of ZnO ceramic towards FEP-ZnO-based Piezo-Tribo hybrid nanogenerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1