Shiyun Wu , Jianjun Du , Jianguo Lei , Jiang Ma , Likuan Zhu
{"title":"基于微超声粉末成型的复合材料挠性铰链的设计与性能分析","authors":"Shiyun Wu , Jianjun Du , Jianguo Lei , Jiang Ma , Likuan Zhu","doi":"10.1016/j.precisioneng.2024.09.020","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a new type of flexure hinge and its fabrication method based on micro-ultrasonic powder molding (micro-UPM). A right-circular notch-type flexure hinge (RFR-RC hinge) comprising an aluminum alloy 7075 (Al 7075) rigid structure and a polypropylene (PP) flexible structure was designed and fabricated. This composite RFR-RC hinge was experimentally studied, and the results helped confirm that the hinge could be considered a complete single structure; the flexible structure had a good forming quality, and the interlocking performance met normal use requirements. The RFR-RC hinge was evaluated in terms of its motion range, stiffness, and stiffness ratio through finite element analysis (FEA) and then compared with a single-material right-circular flexure hinge (RC hinge). The RFR-RC hinge provided a significantly wider operation range with a lower actuation force than the Al 7075-RC hinge and a higher motion pureness and accuracy than the PP-RC hinge. The motion stiffness obtained from the FEA was in agreement with the bending test results, thus validating the FEA results to some extent. From the bending tests, the elastic and total motion ranges of the RFR-RC hinge were found to be 0.068 rad and 0.202 rad, respectively. Finally, the fabrication of a 3-RRR compliant parallel mechanism and four typical applications were taken as examples to demonstrate that the RFR-RC hinge and its fabrication method have a wide range of applications.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"91 ","pages":"Pages 372-382"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and performance analysis of a composite flexure hinge based on micro-ultrasonic powder molding\",\"authors\":\"Shiyun Wu , Jianjun Du , Jianguo Lei , Jiang Ma , Likuan Zhu\",\"doi\":\"10.1016/j.precisioneng.2024.09.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a new type of flexure hinge and its fabrication method based on micro-ultrasonic powder molding (micro-UPM). A right-circular notch-type flexure hinge (RFR-RC hinge) comprising an aluminum alloy 7075 (Al 7075) rigid structure and a polypropylene (PP) flexible structure was designed and fabricated. This composite RFR-RC hinge was experimentally studied, and the results helped confirm that the hinge could be considered a complete single structure; the flexible structure had a good forming quality, and the interlocking performance met normal use requirements. The RFR-RC hinge was evaluated in terms of its motion range, stiffness, and stiffness ratio through finite element analysis (FEA) and then compared with a single-material right-circular flexure hinge (RC hinge). The RFR-RC hinge provided a significantly wider operation range with a lower actuation force than the Al 7075-RC hinge and a higher motion pureness and accuracy than the PP-RC hinge. The motion stiffness obtained from the FEA was in agreement with the bending test results, thus validating the FEA results to some extent. From the bending tests, the elastic and total motion ranges of the RFR-RC hinge were found to be 0.068 rad and 0.202 rad, respectively. Finally, the fabrication of a 3-RRR compliant parallel mechanism and four typical applications were taken as examples to demonstrate that the RFR-RC hinge and its fabrication method have a wide range of applications.</div></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"91 \",\"pages\":\"Pages 372-382\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141635924002204\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924002204","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Design and performance analysis of a composite flexure hinge based on micro-ultrasonic powder molding
This paper presents a new type of flexure hinge and its fabrication method based on micro-ultrasonic powder molding (micro-UPM). A right-circular notch-type flexure hinge (RFR-RC hinge) comprising an aluminum alloy 7075 (Al 7075) rigid structure and a polypropylene (PP) flexible structure was designed and fabricated. This composite RFR-RC hinge was experimentally studied, and the results helped confirm that the hinge could be considered a complete single structure; the flexible structure had a good forming quality, and the interlocking performance met normal use requirements. The RFR-RC hinge was evaluated in terms of its motion range, stiffness, and stiffness ratio through finite element analysis (FEA) and then compared with a single-material right-circular flexure hinge (RC hinge). The RFR-RC hinge provided a significantly wider operation range with a lower actuation force than the Al 7075-RC hinge and a higher motion pureness and accuracy than the PP-RC hinge. The motion stiffness obtained from the FEA was in agreement with the bending test results, thus validating the FEA results to some extent. From the bending tests, the elastic and total motion ranges of the RFR-RC hinge were found to be 0.068 rad and 0.202 rad, respectively. Finally, the fabrication of a 3-RRR compliant parallel mechanism and four typical applications were taken as examples to demonstrate that the RFR-RC hinge and its fabrication method have a wide range of applications.
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.