通过超声波促进细胞外和细胞内电子传递的生物界面充电,快速杀灭细菌

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: R: Reports Pub Date : 2024-10-02 DOI:10.1016/j.mser.2024.100861
Jun Li , Xiangmei Liu , Chaofeng Wang , Yufeng Zheng , Zhenduo Cui , Zhaoyang Li , Shengli Zhu , Hui Jiang , Yu Zhang , Paul K. Chu , Shuilin Wu
{"title":"通过超声波促进细胞外和细胞内电子传递的生物界面充电,快速杀灭细菌","authors":"Jun Li ,&nbsp;Xiangmei Liu ,&nbsp;Chaofeng Wang ,&nbsp;Yufeng Zheng ,&nbsp;Zhenduo Cui ,&nbsp;Zhaoyang Li ,&nbsp;Shengli Zhu ,&nbsp;Hui Jiang ,&nbsp;Yu Zhang ,&nbsp;Paul K. Chu ,&nbsp;Shuilin Wu","doi":"10.1016/j.mser.2024.100861","DOIUrl":null,"url":null,"abstract":"<div><div>The deep-seated drug-resistant bacterial infection is one of the most noticeable public-health threat owing to poor drug therapeutic effect, high recurrence, and devastating complication. Herein, we propose a bactericidal strategy of bio-heterointerface charging through ultrasound-boosted bacterial extracellular and intracellular electron transfer for eradicating implant-related drug-resistant bacterial infection, where a TiO<sub>2</sub>-modified porphyrin-based two-dimensional metal-organic framework (2DMOF-TiO<sub>2</sub>) is selected as a sonosensitizer. The ultrasound-boosted extracellular and intracellular electron transfer between methicillin-resistant <em>Staphylococcus aureus</em> and 2DMOF-TiO<sub>2</sub> induces rapid reactive oxygen species (ROS) burst surrounding bacterial outer and inner, contributing to intracellular oxidation, membrane potential decrease (∼5 mV), membrane disruption, and pyrimidine metabolism disorder, thus causing bacterial death. The in vivo results of 2DMOF-TiO<sub>2</sub> implant exhibit rapid sonocatalytic anti-infection and enhanced osseointegration at bone-implant interface. This platform may inspire the universal thinking about ultrasound-boosted extracellular and intracellular electron-transfer-induced ROS and provide a superior therapeutic candidate for various deep-seated infectious diseases.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"161 ","pages":"Article 100861"},"PeriodicalIF":31.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-heterointerface charging through ultrasound-boosted extracellular and intracellular electron transfer for rapid bacterial killing\",\"authors\":\"Jun Li ,&nbsp;Xiangmei Liu ,&nbsp;Chaofeng Wang ,&nbsp;Yufeng Zheng ,&nbsp;Zhenduo Cui ,&nbsp;Zhaoyang Li ,&nbsp;Shengli Zhu ,&nbsp;Hui Jiang ,&nbsp;Yu Zhang ,&nbsp;Paul K. Chu ,&nbsp;Shuilin Wu\",\"doi\":\"10.1016/j.mser.2024.100861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The deep-seated drug-resistant bacterial infection is one of the most noticeable public-health threat owing to poor drug therapeutic effect, high recurrence, and devastating complication. Herein, we propose a bactericidal strategy of bio-heterointerface charging through ultrasound-boosted bacterial extracellular and intracellular electron transfer for eradicating implant-related drug-resistant bacterial infection, where a TiO<sub>2</sub>-modified porphyrin-based two-dimensional metal-organic framework (2DMOF-TiO<sub>2</sub>) is selected as a sonosensitizer. The ultrasound-boosted extracellular and intracellular electron transfer between methicillin-resistant <em>Staphylococcus aureus</em> and 2DMOF-TiO<sub>2</sub> induces rapid reactive oxygen species (ROS) burst surrounding bacterial outer and inner, contributing to intracellular oxidation, membrane potential decrease (∼5 mV), membrane disruption, and pyrimidine metabolism disorder, thus causing bacterial death. The in vivo results of 2DMOF-TiO<sub>2</sub> implant exhibit rapid sonocatalytic anti-infection and enhanced osseointegration at bone-implant interface. This platform may inspire the universal thinking about ultrasound-boosted extracellular and intracellular electron-transfer-induced ROS and provide a superior therapeutic candidate for various deep-seated infectious diseases.</div></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"161 \",\"pages\":\"Article 100861\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X24000913\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000913","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

根深蒂固的耐药细菌感染因其药物治疗效果差、复发率高和破坏性并发症而成为最显著的公共卫生威胁之一。在此,我们提出了一种通过超声波促进细菌细胞外和细胞内电子传递的生物界面充电杀菌策略,以根除与种植体相关的耐药细菌感染,其中选择了二氧化钛修饰的卟啉基二维金属有机框架(2DMOF-TiO2)作为声敏化剂。耐甲氧西林金黄色葡萄球菌与 2DMOF-TiO2 之间通过超声波促进细胞外和细胞内电子传递,诱导细菌内外周围的活性氧(ROS)迅速爆发,导致细胞内氧化、膜电位降低(∼5 mV)、膜破坏和嘧啶代谢紊乱,从而导致细菌死亡。2DMOF-TiO2 植入体的体内研究结果表明,它具有快速的声催化抗感染作用,并增强了骨与植入体界面的骨结合。该平台可能会启发人们对超声波促进细胞外和细胞内电子传递诱导的 ROS 的普遍思考,并为各种深层感染性疾病提供一种卓越的候选疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bio-heterointerface charging through ultrasound-boosted extracellular and intracellular electron transfer for rapid bacterial killing
The deep-seated drug-resistant bacterial infection is one of the most noticeable public-health threat owing to poor drug therapeutic effect, high recurrence, and devastating complication. Herein, we propose a bactericidal strategy of bio-heterointerface charging through ultrasound-boosted bacterial extracellular and intracellular electron transfer for eradicating implant-related drug-resistant bacterial infection, where a TiO2-modified porphyrin-based two-dimensional metal-organic framework (2DMOF-TiO2) is selected as a sonosensitizer. The ultrasound-boosted extracellular and intracellular electron transfer between methicillin-resistant Staphylococcus aureus and 2DMOF-TiO2 induces rapid reactive oxygen species (ROS) burst surrounding bacterial outer and inner, contributing to intracellular oxidation, membrane potential decrease (∼5 mV), membrane disruption, and pyrimidine metabolism disorder, thus causing bacterial death. The in vivo results of 2DMOF-TiO2 implant exhibit rapid sonocatalytic anti-infection and enhanced osseointegration at bone-implant interface. This platform may inspire the universal thinking about ultrasound-boosted extracellular and intracellular electron-transfer-induced ROS and provide a superior therapeutic candidate for various deep-seated infectious diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
期刊最新文献
Biocompatible piezoelectric lattice materials with ultrasound-regulated multimodal responses High-speed, self-powered 2D-perovskite photodetectors with exceptional ambient stability enabled by planar nanocavity engineering Flexomagnetism: Progress, challenges, and opportunities Machine learning-enhanced photocatalysis for environmental sustainability: Integration and applications Advanced porous MOF materials and technologies for high-efficiency ppm-level toxic gas separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1