Samir Karimov , Elshad Abdullayev , Muslum Gurbanov , Lala Gasimzada , Shabnam Feyziyeva
{"title":"伽马辐照诱导甲醇中六氯苯的降解:动力学、机理和脱卤途径","authors":"Samir Karimov , Elshad Abdullayev , Muslum Gurbanov , Lala Gasimzada , Shabnam Feyziyeva","doi":"10.1016/j.radphyschem.2024.112288","DOIUrl":null,"url":null,"abstract":"<div><div>Hexachlorobenzene (HCB), a persistent organic pollutant (POP) and organochlorine compound (OCC), poses significant environmental and health risks due to its high stability and solubility in fats, oils, and organic solvents. This study investigates the degradation of HCB in methanol using gamma irradiation with a<sup>60</sup>Co source. A 2 × 10<sup>−4</sup> M solution of HCB in methanol was prepared and irradiated at a dose rate of 1.74 Gy/s. The degradation process was monitored using Gas Chromatography-Mass Spectrometry (GC-MS), with optimized parameters for effective separation and analysis of byproducts.</div><div>The results demonstrated a 100% degradation of HCB at an absorbed dose of approximately 51 kGy. The degradation pathway involved successive dechlorination, forming various chlorinated benzene (CB) byproducts such as pentachlorobenzene (PCB), tetrachlorobenzenes (TeCB), trichlorobenzenes (TCB), dichlorobenzenes (DCB), and ultimately benzene.</div><div>Ion chromatography (IC) analysis revealed a dose-dependent increase in Cl⁻ concentrations, confirming the efficiency of dechlorination. A chlorine mass balance was performed to evaluate the distribution of chlorine during the degradation process, tracking Cl⁻ ions, CBs, and residual HCB. As the dose increases, the chlorine content in residual HCB decreases significantly, with none remaining at 50.2 kGy and beyond. At 169.5 kGy, nearly all chlorine (99.96%) is unaccounted for, suggesting that it has likely been released as gaseous byproducts, such as Cl₂ or other volatile chlorinated compounds.</div><div>The formation of solvated electrons and hydrogen radicals initiated the dechlorination process, as evidenced by the identified reaction mechanisms. Kinetic analysis indicated that the degradation followed pseudo-first-order kinetics, with a rate constant of 5 × 10<sup>−4</sup> s<sup>−1</sup>. The study also outlines a dose-dependent trend in radiation chemical yields (G values), initially increasing to a peak of 7.3 × 10<sup>−2</sup> molecules per 100 eV at 12.6 kGy and subsequently decreasing to as low as 5.4 × 10<sup>−4</sup> at 50.2 kGy.</div><div>This study highlights the effectiveness of gamma irradiation for the complete degradation of HCB in methanol, offering a promising method for the remediation of POPs-contaminated environments. The proposed mechanism and kinetic properties provide a comprehensive understanding of the radiolytic degradation process, paving the way for further applications in environmental cleanup technologies.</div></div>","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"226 ","pages":"Article 112288"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gamma irradiation-induced degradation of hexachlorobenzene in methanol: Kinetics, mechanism and dehalogenation pathway\",\"authors\":\"Samir Karimov , Elshad Abdullayev , Muslum Gurbanov , Lala Gasimzada , Shabnam Feyziyeva\",\"doi\":\"10.1016/j.radphyschem.2024.112288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hexachlorobenzene (HCB), a persistent organic pollutant (POP) and organochlorine compound (OCC), poses significant environmental and health risks due to its high stability and solubility in fats, oils, and organic solvents. This study investigates the degradation of HCB in methanol using gamma irradiation with a<sup>60</sup>Co source. A 2 × 10<sup>−4</sup> M solution of HCB in methanol was prepared and irradiated at a dose rate of 1.74 Gy/s. The degradation process was monitored using Gas Chromatography-Mass Spectrometry (GC-MS), with optimized parameters for effective separation and analysis of byproducts.</div><div>The results demonstrated a 100% degradation of HCB at an absorbed dose of approximately 51 kGy. The degradation pathway involved successive dechlorination, forming various chlorinated benzene (CB) byproducts such as pentachlorobenzene (PCB), tetrachlorobenzenes (TeCB), trichlorobenzenes (TCB), dichlorobenzenes (DCB), and ultimately benzene.</div><div>Ion chromatography (IC) analysis revealed a dose-dependent increase in Cl⁻ concentrations, confirming the efficiency of dechlorination. A chlorine mass balance was performed to evaluate the distribution of chlorine during the degradation process, tracking Cl⁻ ions, CBs, and residual HCB. As the dose increases, the chlorine content in residual HCB decreases significantly, with none remaining at 50.2 kGy and beyond. At 169.5 kGy, nearly all chlorine (99.96%) is unaccounted for, suggesting that it has likely been released as gaseous byproducts, such as Cl₂ or other volatile chlorinated compounds.</div><div>The formation of solvated electrons and hydrogen radicals initiated the dechlorination process, as evidenced by the identified reaction mechanisms. Kinetic analysis indicated that the degradation followed pseudo-first-order kinetics, with a rate constant of 5 × 10<sup>−4</sup> s<sup>−1</sup>. The study also outlines a dose-dependent trend in radiation chemical yields (G values), initially increasing to a peak of 7.3 × 10<sup>−2</sup> molecules per 100 eV at 12.6 kGy and subsequently decreasing to as low as 5.4 × 10<sup>−4</sup> at 50.2 kGy.</div><div>This study highlights the effectiveness of gamma irradiation for the complete degradation of HCB in methanol, offering a promising method for the remediation of POPs-contaminated environments. The proposed mechanism and kinetic properties provide a comprehensive understanding of the radiolytic degradation process, paving the way for further applications in environmental cleanup technologies.</div></div>\",\"PeriodicalId\":20861,\"journal\":{\"name\":\"Radiation Physics and Chemistry\",\"volume\":\"226 \",\"pages\":\"Article 112288\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Physics and Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969806X24007801\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969806X24007801","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Gamma irradiation-induced degradation of hexachlorobenzene in methanol: Kinetics, mechanism and dehalogenation pathway
Hexachlorobenzene (HCB), a persistent organic pollutant (POP) and organochlorine compound (OCC), poses significant environmental and health risks due to its high stability and solubility in fats, oils, and organic solvents. This study investigates the degradation of HCB in methanol using gamma irradiation with a60Co source. A 2 × 10−4 M solution of HCB in methanol was prepared and irradiated at a dose rate of 1.74 Gy/s. The degradation process was monitored using Gas Chromatography-Mass Spectrometry (GC-MS), with optimized parameters for effective separation and analysis of byproducts.
The results demonstrated a 100% degradation of HCB at an absorbed dose of approximately 51 kGy. The degradation pathway involved successive dechlorination, forming various chlorinated benzene (CB) byproducts such as pentachlorobenzene (PCB), tetrachlorobenzenes (TeCB), trichlorobenzenes (TCB), dichlorobenzenes (DCB), and ultimately benzene.
Ion chromatography (IC) analysis revealed a dose-dependent increase in Cl⁻ concentrations, confirming the efficiency of dechlorination. A chlorine mass balance was performed to evaluate the distribution of chlorine during the degradation process, tracking Cl⁻ ions, CBs, and residual HCB. As the dose increases, the chlorine content in residual HCB decreases significantly, with none remaining at 50.2 kGy and beyond. At 169.5 kGy, nearly all chlorine (99.96%) is unaccounted for, suggesting that it has likely been released as gaseous byproducts, such as Cl₂ or other volatile chlorinated compounds.
The formation of solvated electrons and hydrogen radicals initiated the dechlorination process, as evidenced by the identified reaction mechanisms. Kinetic analysis indicated that the degradation followed pseudo-first-order kinetics, with a rate constant of 5 × 10−4 s−1. The study also outlines a dose-dependent trend in radiation chemical yields (G values), initially increasing to a peak of 7.3 × 10−2 molecules per 100 eV at 12.6 kGy and subsequently decreasing to as low as 5.4 × 10−4 at 50.2 kGy.
This study highlights the effectiveness of gamma irradiation for the complete degradation of HCB in methanol, offering a promising method for the remediation of POPs-contaminated environments. The proposed mechanism and kinetic properties provide a comprehensive understanding of the radiolytic degradation process, paving the way for further applications in environmental cleanup technologies.
期刊介绍:
Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.