J. Burguete , M. García-Cardosa , E. Antolín , B. Aguilar , J.D. Azcona
{"title":"用于预测同步加速器铅笔束扫描质子治疗系统中计划传输时间结构的随机模型","authors":"J. Burguete , M. García-Cardosa , E. Antolín , B. Aguilar , J.D. Azcona","doi":"10.1016/j.radphyschem.2024.112276","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately predicting dose delivery is crucial for achieving fully personalized treatments in external beam radiation therapy. However, this task remains challenging in some current technologies. In the case of Proton Therapy, for example, current systems employ complex strategies where a pencil beam is scanned in the tumor for treatment delivery. Some parameters in these treatments fluctuate and cannot be fully controlled. Therefore, a stochastic model that accounts for temporal uncertainties can be the best approach to describe these behaviors, particularly when the time-dependent beam interacts with other processes such as moving tumors or organs at risk.</div><div>This paper aims to provide medical physicists with a tool for accurately predicting the temporal structure of beam delivery. To achieve this, we followed a two-step process. First, we characterized the probability distributions for all relevant times in dose delivery. Second, we developed a model based on the measured data. This model serves as a starting point to improve treatment planning performance by providing a range of expected times for dose delivery. While the process was carried out using a compact synchrotron at our university, it can be easily adapted to other technologies.</div></div>","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"226 ","pages":"Article 112276"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic model for predicting the temporal structure of the plan delivery in a synchrotron-based pencil beam scanning proton therapy system\",\"authors\":\"J. Burguete , M. García-Cardosa , E. Antolín , B. Aguilar , J.D. Azcona\",\"doi\":\"10.1016/j.radphyschem.2024.112276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurately predicting dose delivery is crucial for achieving fully personalized treatments in external beam radiation therapy. However, this task remains challenging in some current technologies. In the case of Proton Therapy, for example, current systems employ complex strategies where a pencil beam is scanned in the tumor for treatment delivery. Some parameters in these treatments fluctuate and cannot be fully controlled. Therefore, a stochastic model that accounts for temporal uncertainties can be the best approach to describe these behaviors, particularly when the time-dependent beam interacts with other processes such as moving tumors or organs at risk.</div><div>This paper aims to provide medical physicists with a tool for accurately predicting the temporal structure of beam delivery. To achieve this, we followed a two-step process. First, we characterized the probability distributions for all relevant times in dose delivery. Second, we developed a model based on the measured data. This model serves as a starting point to improve treatment planning performance by providing a range of expected times for dose delivery. While the process was carried out using a compact synchrotron at our university, it can be easily adapted to other technologies.</div></div>\",\"PeriodicalId\":20861,\"journal\":{\"name\":\"Radiation Physics and Chemistry\",\"volume\":\"226 \",\"pages\":\"Article 112276\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Physics and Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969806X24007680\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969806X24007680","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Stochastic model for predicting the temporal structure of the plan delivery in a synchrotron-based pencil beam scanning proton therapy system
Accurately predicting dose delivery is crucial for achieving fully personalized treatments in external beam radiation therapy. However, this task remains challenging in some current technologies. In the case of Proton Therapy, for example, current systems employ complex strategies where a pencil beam is scanned in the tumor for treatment delivery. Some parameters in these treatments fluctuate and cannot be fully controlled. Therefore, a stochastic model that accounts for temporal uncertainties can be the best approach to describe these behaviors, particularly when the time-dependent beam interacts with other processes such as moving tumors or organs at risk.
This paper aims to provide medical physicists with a tool for accurately predicting the temporal structure of beam delivery. To achieve this, we followed a two-step process. First, we characterized the probability distributions for all relevant times in dose delivery. Second, we developed a model based on the measured data. This model serves as a starting point to improve treatment planning performance by providing a range of expected times for dose delivery. While the process was carried out using a compact synchrotron at our university, it can be easily adapted to other technologies.
期刊介绍:
Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.