多肽--起源、合成、应用和未来方向

IF 26 1区 化学 Q1 POLYMER SCIENCE Progress in Polymer Science Pub Date : 2024-09-24 DOI:10.1016/j.progpolymsci.2024.101889
Tobias Alexander Bauer , Leon Simić , Joachim F.R. Van Guyse , Aroa Duro-Castaño , Vicent J. Nebot , Matthias Barz
{"title":"多肽--起源、合成、应用和未来方向","authors":"Tobias Alexander Bauer ,&nbsp;Leon Simić ,&nbsp;Joachim F.R. Van Guyse ,&nbsp;Aroa Duro-Castaño ,&nbsp;Vicent J. Nebot ,&nbsp;Matthias Barz","doi":"10.1016/j.progpolymsci.2024.101889","DOIUrl":null,"url":null,"abstract":"<div><div>Polypept(o)ides combine the stealth-like properties of polypeptoids such as polysarcosine (poly(<em>N</em>-methyl glycine), pSar) with the multifunctionality and intrinsic stimuli-responsiveness of synthetic polypeptides. This class of copolymers can be synthesized by controlled living ring-opening polymerization of the corresponding α-amino acid <em>N</em>-carboxyanhydrides (NCAs) and <em>N</em>-substituted glycine <em>N</em>-carboxyanhydrides (NNCAs). When the polymerization is performed under clean conditions, the resulting copolymers are characterized by high end-group fidelity and Poisson-like molecular weight distributions with dispersities below 1.2. While pSar might be able to tackle most of the current concerns of poly(ethylene glycol) (PEG), <em>e.g.</em>, acute immune responses, the polypeptide part can provide a plethora of reactivity or functionality, allowing to tailor the polymer for specific tasks. In this review, we provide an overview on the origins of NCA polymerization and polypept(o)ides and provide a detailed overview on the last decade of research focusing on synthesis, characterization, and application. Arguably the biggest applicational progress for polypept(o)ides has been made in nanomedicine. Here, the remarkable combination of functionality, biocompatibility and a high degree of synthetic control has led to established protocols for the certified production of polypept(o)ides, which will enable the rapid clinical translation for the years to come.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"158 ","pages":"Article 101889"},"PeriodicalIF":26.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polypept(o)ides – Origins, synthesis, applications and future directions\",\"authors\":\"Tobias Alexander Bauer ,&nbsp;Leon Simić ,&nbsp;Joachim F.R. Van Guyse ,&nbsp;Aroa Duro-Castaño ,&nbsp;Vicent J. Nebot ,&nbsp;Matthias Barz\",\"doi\":\"10.1016/j.progpolymsci.2024.101889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polypept(o)ides combine the stealth-like properties of polypeptoids such as polysarcosine (poly(<em>N</em>-methyl glycine), pSar) with the multifunctionality and intrinsic stimuli-responsiveness of synthetic polypeptides. This class of copolymers can be synthesized by controlled living ring-opening polymerization of the corresponding α-amino acid <em>N</em>-carboxyanhydrides (NCAs) and <em>N</em>-substituted glycine <em>N</em>-carboxyanhydrides (NNCAs). When the polymerization is performed under clean conditions, the resulting copolymers are characterized by high end-group fidelity and Poisson-like molecular weight distributions with dispersities below 1.2. While pSar might be able to tackle most of the current concerns of poly(ethylene glycol) (PEG), <em>e.g.</em>, acute immune responses, the polypeptide part can provide a plethora of reactivity or functionality, allowing to tailor the polymer for specific tasks. In this review, we provide an overview on the origins of NCA polymerization and polypept(o)ides and provide a detailed overview on the last decade of research focusing on synthesis, characterization, and application. Arguably the biggest applicational progress for polypept(o)ides has been made in nanomedicine. Here, the remarkable combination of functionality, biocompatibility and a high degree of synthetic control has led to established protocols for the certified production of polypept(o)ides, which will enable the rapid clinical translation for the years to come.</div></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"158 \",\"pages\":\"Article 101889\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079670024001060\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670024001060","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

多肽结合了多肽(如聚肌氨酸(聚 N-甲基甘氨酸,pSar))的隐形特性与合成多肽的多功能性和内在刺激反应性。这类共聚物可通过相应的α-氨基酸 N-羧基酸酐(NCAs)和 N-取代甘氨酸 N-羧基酸酐(NNCAs)的受控活环开环聚合反应合成。在清洁条件下进行聚合时,所产生的共聚物具有高端基保真度和泊松分子量分布(分散度低于 1.2)的特点。虽然 pSar 可以解决目前聚乙二醇(PEG)的大部分问题,如急性免疫反应,但多肽部分可以提供大量的反应性或功能性,从而为特定任务定制聚合物。在这篇综述中,我们概述了 NCA 聚合和多肽的起源,并详细介绍了近十年来在合成、表征和应用方面的研究进展。可以说,多肽(O)id 在纳米医学领域取得了最大的应用进展。在纳米医学领域,多肽(O)id 集功能性、生物相容性和高度合成控制性于一身,已经形成了多肽(O)id 的认证生产规程,这将使其在未来几年迅速应用于临床。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polypept(o)ides – Origins, synthesis, applications and future directions
Polypept(o)ides combine the stealth-like properties of polypeptoids such as polysarcosine (poly(N-methyl glycine), pSar) with the multifunctionality and intrinsic stimuli-responsiveness of synthetic polypeptides. This class of copolymers can be synthesized by controlled living ring-opening polymerization of the corresponding α-amino acid N-carboxyanhydrides (NCAs) and N-substituted glycine N-carboxyanhydrides (NNCAs). When the polymerization is performed under clean conditions, the resulting copolymers are characterized by high end-group fidelity and Poisson-like molecular weight distributions with dispersities below 1.2. While pSar might be able to tackle most of the current concerns of poly(ethylene glycol) (PEG), e.g., acute immune responses, the polypeptide part can provide a plethora of reactivity or functionality, allowing to tailor the polymer for specific tasks. In this review, we provide an overview on the origins of NCA polymerization and polypept(o)ides and provide a detailed overview on the last decade of research focusing on synthesis, characterization, and application. Arguably the biggest applicational progress for polypept(o)ides has been made in nanomedicine. Here, the remarkable combination of functionality, biocompatibility and a high degree of synthetic control has led to established protocols for the certified production of polypept(o)ides, which will enable the rapid clinical translation for the years to come.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Polymer Science
Progress in Polymer Science 化学-高分子科学
CiteScore
48.70
自引率
1.10%
发文量
54
审稿时长
38 days
期刊介绍: Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field. The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field. The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.
期刊最新文献
Advanced Functional Membranes Based on Amphiphilic Copolymers Editorial Board Progress toward sustainable polymer technologies with ball-mill grinding Stability of Intrinsically Stretchable Polymer Photovoltaics: Fundamentals, Achievements, and Perspectives Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1