虚拟现实分析地图(VRAM):利用虚拟现实数据检测精神障碍的概念框架

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-10-02 DOI:10.1016/j.newideapsych.2024.101127
Vibhav Chitale , Julie D. Henry , Hai-Ning Liang , Ben Matthews , Nilufar Baghaei
{"title":"虚拟现实分析地图(VRAM):利用虚拟现实数据检测精神障碍的概念框架","authors":"Vibhav Chitale ,&nbsp;Julie D. Henry ,&nbsp;Hai-Ning Liang ,&nbsp;Ben Matthews ,&nbsp;Nilufar Baghaei","doi":"10.1016/j.newideapsych.2024.101127","DOIUrl":null,"url":null,"abstract":"<div><div>Virtual reality (VR) is an emerging tool in mental health care yet its potential in diagnostic assessments remains underexplored. Recognizing the growing need of technological advancements that support traditional methods for mental health assessment, this paper introduces the Virtual Reality Analytics Map (VRAM), a novel conceptual framework designed to leverage <span>VR</span> analytics for the detection of symptoms of mental disorders. The VRAM framework integrates psychological constructs with VR technology, systematically mapping and quantifying behavioral domains through specific VR tasks. This approach potentially allows for the precise capture and identification of nuanced behavioral, cognitive, and affective digital biomarkers associated with symptoms of mental disorders. The benefits of the VRAM framework are demonstrated with its example application across various mental disorders ensuring the utility and versatility of the framework. By bridging the gap between psychology and technology, the VRAM framework aims to contribute to the early detection and assessment of mental disorders.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual reality analytics map (VRAM): A conceptual framework for detecting mental disorders using virtual reality data\",\"authors\":\"Vibhav Chitale ,&nbsp;Julie D. Henry ,&nbsp;Hai-Ning Liang ,&nbsp;Ben Matthews ,&nbsp;Nilufar Baghaei\",\"doi\":\"10.1016/j.newideapsych.2024.101127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Virtual reality (VR) is an emerging tool in mental health care yet its potential in diagnostic assessments remains underexplored. Recognizing the growing need of technological advancements that support traditional methods for mental health assessment, this paper introduces the Virtual Reality Analytics Map (VRAM), a novel conceptual framework designed to leverage <span>VR</span> analytics for the detection of symptoms of mental disorders. The VRAM framework integrates psychological constructs with VR technology, systematically mapping and quantifying behavioral domains through specific VR tasks. This approach potentially allows for the precise capture and identification of nuanced behavioral, cognitive, and affective digital biomarkers associated with symptoms of mental disorders. The benefits of the VRAM framework are demonstrated with its example application across various mental disorders ensuring the utility and versatility of the framework. By bridging the gap between psychology and technology, the VRAM framework aims to contribute to the early detection and assessment of mental disorders.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0732118X24000552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0732118X24000552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

虚拟现实(VR)是一种新兴的心理保健工具,但其在诊断评估方面的潜力仍未得到充分挖掘。认识到对支持传统心理健康评估方法的技术进步的需求日益增长,本文介绍了虚拟现实分析地图(VRAM),这是一个新颖的概念框架,旨在利用虚拟现实分析技术检测精神障碍的症状。VRAM 框架将心理结构与 VR 技术相结合,通过特定的 VR 任务系统地映射和量化行为领域。这种方法可以精确捕捉和识别与精神障碍症状相关的细微行为、认知和情感数字生物标记。VRAM 框架在各种精神障碍中的应用实例展示了该框架的优势,确保了该框架的实用性和多功能性。通过缩小心理学与技术之间的差距,VRAM 框架旨在为精神障碍的早期检测和评估做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Virtual reality analytics map (VRAM): A conceptual framework for detecting mental disorders using virtual reality data
Virtual reality (VR) is an emerging tool in mental health care yet its potential in diagnostic assessments remains underexplored. Recognizing the growing need of technological advancements that support traditional methods for mental health assessment, this paper introduces the Virtual Reality Analytics Map (VRAM), a novel conceptual framework designed to leverage VR analytics for the detection of symptoms of mental disorders. The VRAM framework integrates psychological constructs with VR technology, systematically mapping and quantifying behavioral domains through specific VR tasks. This approach potentially allows for the precise capture and identification of nuanced behavioral, cognitive, and affective digital biomarkers associated with symptoms of mental disorders. The benefits of the VRAM framework are demonstrated with its example application across various mental disorders ensuring the utility and versatility of the framework. By bridging the gap between psychology and technology, the VRAM framework aims to contribute to the early detection and assessment of mental disorders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1