2019 年反《反垄断法》抗议活动中的双方故事--一个分析框架

Bhaskarjyoti Das , Krithika Ragothaman , Raghav T. Kesari , Sudarshan T.S.B.
{"title":"2019 年反《反垄断法》抗议活动中的双方故事--一个分析框架","authors":"Bhaskarjyoti Das ,&nbsp;Krithika Ragothaman ,&nbsp;Raghav T. Kesari ,&nbsp;Sudarshan T.S.B.","doi":"10.1016/j.jjimei.2024.100300","DOIUrl":null,"url":null,"abstract":"<div><div>The 2019 anti-CAA protest in India witnessed massive Twitter participation from people on both sides. It was unique compared to most online social movements that showcase people’s movements against authority. The article offers a framework for a big data-driven outside-in analysis of such online social movements. Unlike most existing research focusing on a particular aspect of such a movement, the framework presented examines mobilization and counter-mobilization from various angles. The work systematically juxtaposes the proponents and opponents using statistical analysis, text mining, and graph analysis techniques. Different aspects such as users, content, themes and focus of the conversations, conversational patterns, instrumentation of virality, leadership styles, emotions, and toxicity of the discourse have been considered. The study also examines them as types of frame alignment effort as per Frame Alignment Theory. The framework proposed by this work can be successfully employed to understand any future online social movement and any inductive research using user-generated Big Data.</div></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"4 2","pages":"Article 100300"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The tale of two sides in the 2019 anti-CAA protest—An analytical framework\",\"authors\":\"Bhaskarjyoti Das ,&nbsp;Krithika Ragothaman ,&nbsp;Raghav T. Kesari ,&nbsp;Sudarshan T.S.B.\",\"doi\":\"10.1016/j.jjimei.2024.100300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The 2019 anti-CAA protest in India witnessed massive Twitter participation from people on both sides. It was unique compared to most online social movements that showcase people’s movements against authority. The article offers a framework for a big data-driven outside-in analysis of such online social movements. Unlike most existing research focusing on a particular aspect of such a movement, the framework presented examines mobilization and counter-mobilization from various angles. The work systematically juxtaposes the proponents and opponents using statistical analysis, text mining, and graph analysis techniques. Different aspects such as users, content, themes and focus of the conversations, conversational patterns, instrumentation of virality, leadership styles, emotions, and toxicity of the discourse have been considered. The study also examines them as types of frame alignment effort as per Frame Alignment Theory. The framework proposed by this work can be successfully employed to understand any future online social movement and any inductive research using user-generated Big Data.</div></div>\",\"PeriodicalId\":100699,\"journal\":{\"name\":\"International Journal of Information Management Data Insights\",\"volume\":\"4 2\",\"pages\":\"Article 100300\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Management Data Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667096824000892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096824000892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在印度举行的 2019 年反民航局抗议活动中,双方民众都在推特上进行了大规模参与。与大多数展示人民反权威运动的网络社会运动相比,它是独一无二的。文章提供了一个对此类网络社会运动进行大数据驱动的由外而内分析的框架。与大多数关注此类运动某一方面的现有研究不同,本文提出的框架从不同角度研究了动员和反动员。这项工作利用统计分析、文本挖掘和图表分析技术,系统地将支持者和反对者并列起来。研究考虑了用户、对话内容、主题和焦点、对话模式、病毒式传播工具、领导风格、情绪和话语毒性等不同方面。本研究还根据框架对齐理论,将它们作为框架对齐努力的类型进行了研究。本作品提出的框架可成功用于理解未来的任何在线社会运动以及使用用户生成的大数据进行的任何归纳研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The tale of two sides in the 2019 anti-CAA protest—An analytical framework
The 2019 anti-CAA protest in India witnessed massive Twitter participation from people on both sides. It was unique compared to most online social movements that showcase people’s movements against authority. The article offers a framework for a big data-driven outside-in analysis of such online social movements. Unlike most existing research focusing on a particular aspect of such a movement, the framework presented examines mobilization and counter-mobilization from various angles. The work systematically juxtaposes the proponents and opponents using statistical analysis, text mining, and graph analysis techniques. Different aspects such as users, content, themes and focus of the conversations, conversational patterns, instrumentation of virality, leadership styles, emotions, and toxicity of the discourse have been considered. The study also examines them as types of frame alignment effort as per Frame Alignment Theory. The framework proposed by this work can be successfully employed to understand any future online social movement and any inductive research using user-generated Big Data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
期刊最新文献
Integrating trust and satisfaction into the UTAUT model to predict Chatbot adoption – A comparison between Gen-Z and Millennials Assessing industry 5.0 readiness—Prototype of a holistic digital index to evaluate sustainability, resilience and human-centered factors CovKG: A Covid-19 Knowledge Graph for enabling multidimensional analytics on Covid-19 epidemiological data considering spatiotemporal, environmental, health, and socioeconomic aspects Enhancing customer retention with machine learning: A comparative analysis of ensemble models for accurate churn prediction Customization of health insurance premiums using machine learning and explainable AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1