通过系统分析和模型开发实现 BIM 和大数据的战略协调

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2024-10-02 DOI:10.1016/j.autcon.2024.105801
Apeesada Sompolgrunk , Saeed Banihashemi , Hamed Golzad , Khuong Le Nguyen
{"title":"通过系统分析和模型开发实现 BIM 和大数据的战略协调","authors":"Apeesada Sompolgrunk ,&nbsp;Saeed Banihashemi ,&nbsp;Hamed Golzad ,&nbsp;Khuong Le Nguyen","doi":"10.1016/j.autcon.2024.105801","DOIUrl":null,"url":null,"abstract":"<div><div>Organisations increasingly rely on data-driven strategies, utilising analytics to achieve competitive advantages. This paper systematically investigates the integration of big data into Building Information Modeling (BIM) within the Architecture, Engineering, and Construction (AEC) sectors, named “big BIM data.” Employing mixed methods of systematic and bibliometric analysis, it synthesises findings from 125 records published 2013–23. While many studies are at preliminary stages with conceptual or small-scale experimental approaches, the paper categorises its results into four domains: AEC organisational infrastructure, big BIM data (IT) infrastructure, AEC organisational strategic domain, and big BIM data (IT) strategic domain, aligned with the Strategic Alignment Model (SAM), exploring organisational competencies, governance factors, and strategic frameworks. This paper introduces the AEC Organisational - Big BIM Data SAM as the research agenda to implement big BIM data utilisation across AEC industry. This framework thoroughly addresses organisational dynamics while emphasising interconnectedness among individual projects, organisational tiers, and industry-wide standards.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"168 ","pages":"Article 105801"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategic alignment of BIM and big data through systematic analysis and model development\",\"authors\":\"Apeesada Sompolgrunk ,&nbsp;Saeed Banihashemi ,&nbsp;Hamed Golzad ,&nbsp;Khuong Le Nguyen\",\"doi\":\"10.1016/j.autcon.2024.105801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Organisations increasingly rely on data-driven strategies, utilising analytics to achieve competitive advantages. This paper systematically investigates the integration of big data into Building Information Modeling (BIM) within the Architecture, Engineering, and Construction (AEC) sectors, named “big BIM data.” Employing mixed methods of systematic and bibliometric analysis, it synthesises findings from 125 records published 2013–23. While many studies are at preliminary stages with conceptual or small-scale experimental approaches, the paper categorises its results into four domains: AEC organisational infrastructure, big BIM data (IT) infrastructure, AEC organisational strategic domain, and big BIM data (IT) strategic domain, aligned with the Strategic Alignment Model (SAM), exploring organisational competencies, governance factors, and strategic frameworks. This paper introduces the AEC Organisational - Big BIM Data SAM as the research agenda to implement big BIM data utilisation across AEC industry. This framework thoroughly addresses organisational dynamics while emphasising interconnectedness among individual projects, organisational tiers, and industry-wide standards.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"168 \",\"pages\":\"Article 105801\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580524005375\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524005375","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

企业越来越依赖于数据驱动战略,利用分析来实现竞争优势。本文系统地研究了在建筑、工程和施工(AEC)领域将大数据整合到建筑信息模型(BIM)中的情况,并将其命名为 "BIM 大数据"。本文采用系统分析和文献计量分析的混合方法,综合了 2013 年至 2013 年发表的 125 篇文献的研究结果。虽然许多研究还处于概念性或小规模实验方法的初步阶段,但本文将研究结果分为四个领域:AEC 组织基础设施、大 BIM 数据(IT)基础设施、AEC 组织战略领域和大 BIM 数据(IT)战略领域,与战略联盟模型(SAM)保持一致,探索组织能力、治理因素和战略框架。本文介绍了 AEC 组织 - 大 BIM 数据 SAM,作为在整个 AEC 行业实施大 BIM 数据利用的研究议程。该框架全面探讨了组织动态,同时强调了单个项目、组织层级和行业标准之间的相互联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategic alignment of BIM and big data through systematic analysis and model development
Organisations increasingly rely on data-driven strategies, utilising analytics to achieve competitive advantages. This paper systematically investigates the integration of big data into Building Information Modeling (BIM) within the Architecture, Engineering, and Construction (AEC) sectors, named “big BIM data.” Employing mixed methods of systematic and bibliometric analysis, it synthesises findings from 125 records published 2013–23. While many studies are at preliminary stages with conceptual or small-scale experimental approaches, the paper categorises its results into four domains: AEC organisational infrastructure, big BIM data (IT) infrastructure, AEC organisational strategic domain, and big BIM data (IT) strategic domain, aligned with the Strategic Alignment Model (SAM), exploring organisational competencies, governance factors, and strategic frameworks. This paper introduces the AEC Organisational - Big BIM Data SAM as the research agenda to implement big BIM data utilisation across AEC industry. This framework thoroughly addresses organisational dynamics while emphasising interconnectedness among individual projects, organisational tiers, and industry-wide standards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Construction safety inspection with contrastive language-image pre-training (CLIP) image captioning and attention Signs on glasses: LiDAR data voids, hotspot effect, and reflection artifacts Automated physics-based modeling of construction equipment through data fusion Automated daily report generation from construction videos using ChatGPT and computer vision Automated rule-based safety inspection and compliance checking of temporary guardrail systems in construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1