通过基于偏振调制的荧光发射差分实现双色活细胞超分辨率荧光寿命成像

IF 3.5 2区 工程技术 Q2 OPTICS Optics and Lasers in Engineering Pub Date : 2024-10-03 DOI:10.1016/j.optlaseng.2024.108547
{"title":"通过基于偏振调制的荧光发射差分实现双色活细胞超分辨率荧光寿命成像","authors":"","doi":"10.1016/j.optlaseng.2024.108547","DOIUrl":null,"url":null,"abstract":"<div><div>Fluorescence lifetime imaging microscopy (FLIM) has been proposed as an important technique for understanding the chemical microenvironment in cells and tissues, as it provides additional information compared to conventional fluorescence imaging. However, it is often hindered by limited spatial resolution and signal-to-noise ratio (SNR). In this study, we introduce a dual-color super-resolution FLIM method, termed Parallel Detection and Fluorescence Emission Difference (PDFED) FLIM. The integration of parallel detection with photon reassignment enhances photon efficiency, SNR, and resolution effectively. Additionally, differential imaging employing polarization modulation effectively reduces artifacts resulting from sample changes during live-cell imaging. PDFED-FLIM demonstrates enhancements in spatial resolution by approximately 1.6 times and peak signal-to-noise ratio (PSNR) by around 1.3 times. Furthermore, live-cell imaging showcases improved resolution and image quality, signifying the extensive potential of PDFED-FLIM in biomedical applications.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-color live-cell super-resolution fluorescence lifetime imaging via polarization modulation-based fluorescence emission difference\",\"authors\":\"\",\"doi\":\"10.1016/j.optlaseng.2024.108547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fluorescence lifetime imaging microscopy (FLIM) has been proposed as an important technique for understanding the chemical microenvironment in cells and tissues, as it provides additional information compared to conventional fluorescence imaging. However, it is often hindered by limited spatial resolution and signal-to-noise ratio (SNR). In this study, we introduce a dual-color super-resolution FLIM method, termed Parallel Detection and Fluorescence Emission Difference (PDFED) FLIM. The integration of parallel detection with photon reassignment enhances photon efficiency, SNR, and resolution effectively. Additionally, differential imaging employing polarization modulation effectively reduces artifacts resulting from sample changes during live-cell imaging. PDFED-FLIM demonstrates enhancements in spatial resolution by approximately 1.6 times and peak signal-to-noise ratio (PSNR) by around 1.3 times. Furthermore, live-cell imaging showcases improved resolution and image quality, signifying the extensive potential of PDFED-FLIM in biomedical applications.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816624005256\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624005256","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

荧光寿命成像显微镜(FLIM)被认为是了解细胞和组织中化学微环境的重要技术,因为它能提供比传统荧光成像更多的信息。然而,它往往受到空间分辨率和信噪比(SNR)的限制。在本研究中,我们介绍了一种双色超分辨 FLIM 方法,即平行检测和荧光发射差(PDFED)FLIM。并行检测与光子重新分配的整合有效地提高了光子效率、信噪比和分辨率。此外,采用偏振调制的差分成像技术可有效减少活细胞成像过程中因样品变化而产生的伪影。PDFED-FLIM 的空间分辨率提高了约 1.6 倍,峰值信噪比 (PSNR) 提高了约 1.3 倍。此外,活细胞成像显示出更高的分辨率和图像质量,标志着 PDFED-FLIM 在生物医学应用中的广泛潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual-color live-cell super-resolution fluorescence lifetime imaging via polarization modulation-based fluorescence emission difference
Fluorescence lifetime imaging microscopy (FLIM) has been proposed as an important technique for understanding the chemical microenvironment in cells and tissues, as it provides additional information compared to conventional fluorescence imaging. However, it is often hindered by limited spatial resolution and signal-to-noise ratio (SNR). In this study, we introduce a dual-color super-resolution FLIM method, termed Parallel Detection and Fluorescence Emission Difference (PDFED) FLIM. The integration of parallel detection with photon reassignment enhances photon efficiency, SNR, and resolution effectively. Additionally, differential imaging employing polarization modulation effectively reduces artifacts resulting from sample changes during live-cell imaging. PDFED-FLIM demonstrates enhancements in spatial resolution by approximately 1.6 times and peak signal-to-noise ratio (PSNR) by around 1.3 times. Furthermore, live-cell imaging showcases improved resolution and image quality, signifying the extensive potential of PDFED-FLIM in biomedical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
期刊最新文献
Light field Laparoscope imaging model and calibration method based on flexible aperture-angular plane Wafer chamfering grinding wheels dressing via dynamic deflection laser beam Full polarimetric evaluation of the anamorphic transfer function for pixelated liquid crystal microdisplays Enhanced light field depth estimation through occlusion refinement and feature fusion Highly-secure scattering-media-based key storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1