{"title":"基于激光的钢粉定向能沉积中散焦距离的意义:对熔覆几何特征和工艺参数图的影响。","authors":"Monideepa Mukherjee","doi":"10.1016/j.optlaseng.2024.108618","DOIUrl":null,"url":null,"abstract":"<div><div>Laser based directed energy deposition (L-DED) is an additive manufacturing process in which laser energy is used to fuse powder feedstock by melting while being deposited in a layer-by-layer manner, to produce three dimensional (3D) components. The quality of parts produced through this process depends on numerous process parameters. In the present work, the combined effects of defocussing distance, laser power and scanning speed on the geometrical characteristics of single line clads of AISI SS316L stainless steel and H13 tool steel powders produced through L-DED, was investigated. Theoretical analysis of the mutual interactions between laser, powder and substrate was used to explain the variations in clad geometry and deposition behaviour of the two steels. Process parameter maps were developed for the two steels and the influence of defocussing distance on optimal process parameter windows was evaluated. The work demonstrates that laser defocussing distance can be used as a simple but effective method to enhance the flexibility of the deposition process.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108618"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significance of defocussing distance in laser based directed energy deposition of steel powders: Effect on clad geometrical characteristics and process parameter maps.\",\"authors\":\"Monideepa Mukherjee\",\"doi\":\"10.1016/j.optlaseng.2024.108618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Laser based directed energy deposition (L-DED) is an additive manufacturing process in which laser energy is used to fuse powder feedstock by melting while being deposited in a layer-by-layer manner, to produce three dimensional (3D) components. The quality of parts produced through this process depends on numerous process parameters. In the present work, the combined effects of defocussing distance, laser power and scanning speed on the geometrical characteristics of single line clads of AISI SS316L stainless steel and H13 tool steel powders produced through L-DED, was investigated. Theoretical analysis of the mutual interactions between laser, powder and substrate was used to explain the variations in clad geometry and deposition behaviour of the two steels. Process parameter maps were developed for the two steels and the influence of defocussing distance on optimal process parameter windows was evaluated. The work demonstrates that laser defocussing distance can be used as a simple but effective method to enhance the flexibility of the deposition process.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":\"184 \",\"pages\":\"Article 108618\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816624005967\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624005967","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Significance of defocussing distance in laser based directed energy deposition of steel powders: Effect on clad geometrical characteristics and process parameter maps.
Laser based directed energy deposition (L-DED) is an additive manufacturing process in which laser energy is used to fuse powder feedstock by melting while being deposited in a layer-by-layer manner, to produce three dimensional (3D) components. The quality of parts produced through this process depends on numerous process parameters. In the present work, the combined effects of defocussing distance, laser power and scanning speed on the geometrical characteristics of single line clads of AISI SS316L stainless steel and H13 tool steel powders produced through L-DED, was investigated. Theoretical analysis of the mutual interactions between laser, powder and substrate was used to explain the variations in clad geometry and deposition behaviour of the two steels. Process parameter maps were developed for the two steels and the influence of defocussing distance on optimal process parameter windows was evaluated. The work demonstrates that laser defocussing distance can be used as a simple but effective method to enhance the flexibility of the deposition process.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques