Zhiping Liu , Zelong Li , Duo Lyu , Zhiwu Zhang , Hongwei Hu
{"title":"利用泄漏瑞利波的表面缺陷虚拟源全聚焦法","authors":"Zhiping Liu , Zelong Li , Duo Lyu , Zhiwu Zhang , Hongwei Hu","doi":"10.1016/j.apacoust.2024.110329","DOIUrl":null,"url":null,"abstract":"<div><div>Leaky Rayleigh waves are sensitive to surface defects and beneficial for automated detection due to their non-contact characteristics. However, the amplitude of the leaky Rayleigh waves is low due to the attenuation of waveform conversion and acoustic waves propagation, which limits the imaging quality for long-distance detection. This study introduces a novel method combining leaky Rayleigh waves detection with virtual source total focusing method. The virtual source (VS) technology enhances the emission energy of leaky Rayleigh waves. Then, the total focusing method (TFM) is applied to acquire high-accuracy images of defects. To reduce noise and artifacts, a weighting function based on the coherence factor (CF) is developed to weight the TFM superimposed signals, thereby achieving high-quality image reconstruction. Experimental results show that compared with the conventional TFM method, the proposed method can effectively improve the amplitude of imaging signals while reducing system noise and imaging artifacts. The lateral accuracy of defects is improved, with the average lateral error of defect size being 0.178 mm. The signal-to-noise ratio (SNR) of ultrasound images is increased by 27.59 dB, and the array performance index (API) of ultrasound images is decreased by 33.78 %. The proposed method provides a new and effective approach for quantitatively assessing the surface defects of metal components using leaky Rayleigh waves.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":"228 ","pages":"Article 110329"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual source total focusing method for surface defects using leaky Rayleigh waves\",\"authors\":\"Zhiping Liu , Zelong Li , Duo Lyu , Zhiwu Zhang , Hongwei Hu\",\"doi\":\"10.1016/j.apacoust.2024.110329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Leaky Rayleigh waves are sensitive to surface defects and beneficial for automated detection due to their non-contact characteristics. However, the amplitude of the leaky Rayleigh waves is low due to the attenuation of waveform conversion and acoustic waves propagation, which limits the imaging quality for long-distance detection. This study introduces a novel method combining leaky Rayleigh waves detection with virtual source total focusing method. The virtual source (VS) technology enhances the emission energy of leaky Rayleigh waves. Then, the total focusing method (TFM) is applied to acquire high-accuracy images of defects. To reduce noise and artifacts, a weighting function based on the coherence factor (CF) is developed to weight the TFM superimposed signals, thereby achieving high-quality image reconstruction. Experimental results show that compared with the conventional TFM method, the proposed method can effectively improve the amplitude of imaging signals while reducing system noise and imaging artifacts. The lateral accuracy of defects is improved, with the average lateral error of defect size being 0.178 mm. The signal-to-noise ratio (SNR) of ultrasound images is increased by 27.59 dB, and the array performance index (API) of ultrasound images is decreased by 33.78 %. The proposed method provides a new and effective approach for quantitatively assessing the surface defects of metal components using leaky Rayleigh waves.</div></div>\",\"PeriodicalId\":55506,\"journal\":{\"name\":\"Applied Acoustics\",\"volume\":\"228 \",\"pages\":\"Article 110329\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003682X24004808\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24004808","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Virtual source total focusing method for surface defects using leaky Rayleigh waves
Leaky Rayleigh waves are sensitive to surface defects and beneficial for automated detection due to their non-contact characteristics. However, the amplitude of the leaky Rayleigh waves is low due to the attenuation of waveform conversion and acoustic waves propagation, which limits the imaging quality for long-distance detection. This study introduces a novel method combining leaky Rayleigh waves detection with virtual source total focusing method. The virtual source (VS) technology enhances the emission energy of leaky Rayleigh waves. Then, the total focusing method (TFM) is applied to acquire high-accuracy images of defects. To reduce noise and artifacts, a weighting function based on the coherence factor (CF) is developed to weight the TFM superimposed signals, thereby achieving high-quality image reconstruction. Experimental results show that compared with the conventional TFM method, the proposed method can effectively improve the amplitude of imaging signals while reducing system noise and imaging artifacts. The lateral accuracy of defects is improved, with the average lateral error of defect size being 0.178 mm. The signal-to-noise ratio (SNR) of ultrasound images is increased by 27.59 dB, and the array performance index (API) of ultrasound images is decreased by 33.78 %. The proposed method provides a new and effective approach for quantitatively assessing the surface defects of metal components using leaky Rayleigh waves.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.