{"title":"对基于事件的径流系数变异性的短期和长期控制分析","authors":"Tianle Xu , Pin-Ching Li , Venkatesh Merwade","doi":"10.1016/j.ejrh.2024.101993","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>This study focuses on the Ohio Region, which spans 11 states in the eastern United States.</div></div><div><h3>Study focus</h3><div>Runoff coefficients are crucial in hydrology, indicating the relationship between rainfall and runoff. Understanding their controls and variability is essential for water resource assessment, management strategies, and land use planning. This research examines factors influencing runoff coefficients and their trends in the Ohio region using data from the North American Land Data Assimilation System phase-2 (NLDAS-2) Mosaic Land Surface Model, covering 2000–2020. The analysis considers short-term controls, such as climatic features (rainfall intensity, amount, and duration), hydrological factors (antecedent soil moisture, drainage density, and curve number), topographic factors (drainage area, land use, slope, elevation), and watershed shape. Additionally, the study investigates trends in runoff coefficients and their long-term controls, including climatic factors and land use changes.</div></div><div><h3>New hydrological insights for the region</h3><div>The findings indicate that runoff coefficients increase with antecedent soil moisture and rainfall intensity. Higher elevations show lower runoff coefficients due to forested land use. Larger watersheds have lower runoff coefficients at low rainfall intensity but higher ones when intensity is high. Long-term trends reveal soil moisture as the primary control, with land cover changes as a secondary factor. This research deepens understanding of runoff coefficient dynamics and controls in the Ohio region. Future studies could explore the impacts of urbanization, reservoirs, evapotranspiration, and snowmelt on runoff coefficients.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 101993"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of short- and long-term controls on the variability of event-based runoff coefficient\",\"authors\":\"Tianle Xu , Pin-Ching Li , Venkatesh Merwade\",\"doi\":\"10.1016/j.ejrh.2024.101993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Study region</h3><div>This study focuses on the Ohio Region, which spans 11 states in the eastern United States.</div></div><div><h3>Study focus</h3><div>Runoff coefficients are crucial in hydrology, indicating the relationship between rainfall and runoff. Understanding their controls and variability is essential for water resource assessment, management strategies, and land use planning. This research examines factors influencing runoff coefficients and their trends in the Ohio region using data from the North American Land Data Assimilation System phase-2 (NLDAS-2) Mosaic Land Surface Model, covering 2000–2020. The analysis considers short-term controls, such as climatic features (rainfall intensity, amount, and duration), hydrological factors (antecedent soil moisture, drainage density, and curve number), topographic factors (drainage area, land use, slope, elevation), and watershed shape. Additionally, the study investigates trends in runoff coefficients and their long-term controls, including climatic factors and land use changes.</div></div><div><h3>New hydrological insights for the region</h3><div>The findings indicate that runoff coefficients increase with antecedent soil moisture and rainfall intensity. Higher elevations show lower runoff coefficients due to forested land use. Larger watersheds have lower runoff coefficients at low rainfall intensity but higher ones when intensity is high. Long-term trends reveal soil moisture as the primary control, with land cover changes as a secondary factor. This research deepens understanding of runoff coefficient dynamics and controls in the Ohio region. Future studies could explore the impacts of urbanization, reservoirs, evapotranspiration, and snowmelt on runoff coefficients.</div></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":\"56 \",\"pages\":\"Article 101993\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581824003422\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581824003422","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Analysis of short- and long-term controls on the variability of event-based runoff coefficient
Study region
This study focuses on the Ohio Region, which spans 11 states in the eastern United States.
Study focus
Runoff coefficients are crucial in hydrology, indicating the relationship between rainfall and runoff. Understanding their controls and variability is essential for water resource assessment, management strategies, and land use planning. This research examines factors influencing runoff coefficients and their trends in the Ohio region using data from the North American Land Data Assimilation System phase-2 (NLDAS-2) Mosaic Land Surface Model, covering 2000–2020. The analysis considers short-term controls, such as climatic features (rainfall intensity, amount, and duration), hydrological factors (antecedent soil moisture, drainage density, and curve number), topographic factors (drainage area, land use, slope, elevation), and watershed shape. Additionally, the study investigates trends in runoff coefficients and their long-term controls, including climatic factors and land use changes.
New hydrological insights for the region
The findings indicate that runoff coefficients increase with antecedent soil moisture and rainfall intensity. Higher elevations show lower runoff coefficients due to forested land use. Larger watersheds have lower runoff coefficients at low rainfall intensity but higher ones when intensity is high. Long-term trends reveal soil moisture as the primary control, with land cover changes as a secondary factor. This research deepens understanding of runoff coefficient dynamics and controls in the Ohio region. Future studies could explore the impacts of urbanization, reservoirs, evapotranspiration, and snowmelt on runoff coefficients.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.