{"title":"在公园层面优化综合能源系统:采用放能经济学的合作博弈方法","authors":"Qiuju Chen , Jungang Wang","doi":"10.1016/j.compeleceng.2024.109762","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive framework for optimizing energy systems by integrating exergy analysis, energy economics, and game theory. The concept of exergy, which quantifies the usable energy within a system, is employed to evaluate energy efficiency and losses across various energy sources, including thermal, cooling, chemical, and electrical systems. Stoichiometric coefficients, denoted by the factor λ, are utilized to simplify exergy calculations for different energy types and processes. The economic evaluation of energy flows is conducted through energy economics principles, incorporating cost allocation and balance equations. The integration of game theory into the optimization model ensures strategic interactions among energy components, leading to a Nash equilibrium that balances economic performance, efficiency, and environmental sustainability. The model also accounts for emissions and the required proportion of renewable energy. To solve the complex optimization problem, a modified Particle Swarm Optimization (PSO) algorithm is employed, featuring adaptive mechanisms for velocity and inertia updates, enhancing the search process for the optimal solution. The proposed framework is designed to optimize the Integrated Energy System (IES) efficiently, ensuring sustainable and economically viable energy management. The analysis of optimization strategies highlights a trade-off between cost and efficiency. Strategy 1, focused on minimizing cost, achieves the lowest cost at 4069.37 CNY, 25.79 % less than Strategy 2, but with a reduced exergy efficiency of 59.82 %, which is 10.14 % lower than Strategy 2′s 68.47 %. Strategy 3 offers a balanced approach, with a cost of 4970.89 CNY, 9.43 % higher than Strategy 1 but 9.43 % lower than Strategy 2. It achieves an exergy efficiency of 67.87 %, only 0.60 % lower than Strategy 2, thus providing a practical compromise between economic performance and efficiency.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109762"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing integrated energy systems at park level: A cooperative game approach with exergy economics\",\"authors\":\"Qiuju Chen , Jungang Wang\",\"doi\":\"10.1016/j.compeleceng.2024.109762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a comprehensive framework for optimizing energy systems by integrating exergy analysis, energy economics, and game theory. The concept of exergy, which quantifies the usable energy within a system, is employed to evaluate energy efficiency and losses across various energy sources, including thermal, cooling, chemical, and electrical systems. Stoichiometric coefficients, denoted by the factor λ, are utilized to simplify exergy calculations for different energy types and processes. The economic evaluation of energy flows is conducted through energy economics principles, incorporating cost allocation and balance equations. The integration of game theory into the optimization model ensures strategic interactions among energy components, leading to a Nash equilibrium that balances economic performance, efficiency, and environmental sustainability. The model also accounts for emissions and the required proportion of renewable energy. To solve the complex optimization problem, a modified Particle Swarm Optimization (PSO) algorithm is employed, featuring adaptive mechanisms for velocity and inertia updates, enhancing the search process for the optimal solution. The proposed framework is designed to optimize the Integrated Energy System (IES) efficiently, ensuring sustainable and economically viable energy management. The analysis of optimization strategies highlights a trade-off between cost and efficiency. Strategy 1, focused on minimizing cost, achieves the lowest cost at 4069.37 CNY, 25.79 % less than Strategy 2, but with a reduced exergy efficiency of 59.82 %, which is 10.14 % lower than Strategy 2′s 68.47 %. Strategy 3 offers a balanced approach, with a cost of 4970.89 CNY, 9.43 % higher than Strategy 1 but 9.43 % lower than Strategy 2. It achieves an exergy efficiency of 67.87 %, only 0.60 % lower than Strategy 2, thus providing a practical compromise between economic performance and efficiency.</div></div>\",\"PeriodicalId\":50630,\"journal\":{\"name\":\"Computers & Electrical Engineering\",\"volume\":\"120 \",\"pages\":\"Article 109762\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Electrical Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004579062400689X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579062400689X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Optimizing integrated energy systems at park level: A cooperative game approach with exergy economics
This study presents a comprehensive framework for optimizing energy systems by integrating exergy analysis, energy economics, and game theory. The concept of exergy, which quantifies the usable energy within a system, is employed to evaluate energy efficiency and losses across various energy sources, including thermal, cooling, chemical, and electrical systems. Stoichiometric coefficients, denoted by the factor λ, are utilized to simplify exergy calculations for different energy types and processes. The economic evaluation of energy flows is conducted through energy economics principles, incorporating cost allocation and balance equations. The integration of game theory into the optimization model ensures strategic interactions among energy components, leading to a Nash equilibrium that balances economic performance, efficiency, and environmental sustainability. The model also accounts for emissions and the required proportion of renewable energy. To solve the complex optimization problem, a modified Particle Swarm Optimization (PSO) algorithm is employed, featuring adaptive mechanisms for velocity and inertia updates, enhancing the search process for the optimal solution. The proposed framework is designed to optimize the Integrated Energy System (IES) efficiently, ensuring sustainable and economically viable energy management. The analysis of optimization strategies highlights a trade-off between cost and efficiency. Strategy 1, focused on minimizing cost, achieves the lowest cost at 4069.37 CNY, 25.79 % less than Strategy 2, but with a reduced exergy efficiency of 59.82 %, which is 10.14 % lower than Strategy 2′s 68.47 %. Strategy 3 offers a balanced approach, with a cost of 4970.89 CNY, 9.43 % higher than Strategy 1 but 9.43 % lower than Strategy 2. It achieves an exergy efficiency of 67.87 %, only 0.60 % lower than Strategy 2, thus providing a practical compromise between economic performance and efficiency.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.