对具有一般边界条件的嵌入式非局部 CNTRC 梁的自由振动进行精确高效的分析模拟

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Physica B-condensed Matter Pub Date : 2024-09-26 DOI:10.1016/j.physb.2024.416556
{"title":"对具有一般边界条件的嵌入式非局部 CNTRC 梁的自由振动进行精确高效的分析模拟","authors":"","doi":"10.1016/j.physb.2024.416556","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to evaluate the free vibrational response of embedded restrained nanobeams enriched by nanocomposites based on an exact Fourier series approach. In order to capture the small-scale effects on the dynamical response, Eringen's differential form of nonlocal elasticity is used which employs a scale (nonlocal) parameter. Within the framework of Rayleigh and Bernoulli-Euler beam theories, including the effect of nonlocality and employing the Fourier sine series together with Stokes' transformation, systems of linear equations are obtained and solved using the coefficient matrices. The combined effects of elastic boundary conditions, elastic foundation, dispersion patterns and volume fractions of carbon nanotubes, and nonlocal parameter are examined by solving eigenvalue problems constructed with Fourier infinite series. Free vibration frequencies are calculated for carbon nanotube-reinforced nanobeams under different rigid or restrained boundary conditions, including Winkler-Pasternak type elastic foundation. A comprehensive parametric study is performed, focusing on various effects for the free vibrational response of the composite nanobeam reinforced with carbon nanotubes. It is concluded that adding a small amount of carbon nanotube material can reinforce the stiffness of the composite nanobeam, and its free vibration performance is significantly affected by the distribution patterns, elastic medium, and boundary conditions.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate and efficient analytical simulation of free vibration for embedded nonlocal CNTRC beams with general boundary conditions\",\"authors\":\"\",\"doi\":\"10.1016/j.physb.2024.416556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to evaluate the free vibrational response of embedded restrained nanobeams enriched by nanocomposites based on an exact Fourier series approach. In order to capture the small-scale effects on the dynamical response, Eringen's differential form of nonlocal elasticity is used which employs a scale (nonlocal) parameter. Within the framework of Rayleigh and Bernoulli-Euler beam theories, including the effect of nonlocality and employing the Fourier sine series together with Stokes' transformation, systems of linear equations are obtained and solved using the coefficient matrices. The combined effects of elastic boundary conditions, elastic foundation, dispersion patterns and volume fractions of carbon nanotubes, and nonlocal parameter are examined by solving eigenvalue problems constructed with Fourier infinite series. Free vibration frequencies are calculated for carbon nanotube-reinforced nanobeams under different rigid or restrained boundary conditions, including Winkler-Pasternak type elastic foundation. A comprehensive parametric study is performed, focusing on various effects for the free vibrational response of the composite nanobeam reinforced with carbon nanotubes. It is concluded that adding a small amount of carbon nanotube material can reinforce the stiffness of the composite nanobeam, and its free vibration performance is significantly affected by the distribution patterns, elastic medium, and boundary conditions.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452624008974\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624008974","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在基于精确傅里叶级数法评估由纳米复合材料填充的嵌入约束纳米梁的自由振动响应。为了捕捉动态响应中的小尺度效应,采用了艾林根的非局部弹性微分形式,其中使用了尺度(非局部)参数。在瑞利和伯努利-欧勒梁理论的框架内,包括非局部性的影响,并采用傅里叶正弦级数和斯托克斯变换,得到线性方程组,并使用系数矩阵求解。通过求解用傅里叶无穷级数构造的特征值问题,研究了弹性边界条件、弹性基础、碳纳米管的分散模式和体积分数以及非局部参数的综合影响。计算了碳纳米管增强纳米梁在不同刚性或约束边界条件(包括 Winkler-Pasternak 型弹性地基)下的自由振动频率。针对碳纳米管增强复合纳米梁自由振动响应的各种影响,进行了全面的参数研究。研究得出的结论是,添加少量碳纳米管材料可以增强复合纳米梁的刚度,其自由振动性能受到分布模式、弹性介质和边界条件的显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate and efficient analytical simulation of free vibration for embedded nonlocal CNTRC beams with general boundary conditions
This study aims to evaluate the free vibrational response of embedded restrained nanobeams enriched by nanocomposites based on an exact Fourier series approach. In order to capture the small-scale effects on the dynamical response, Eringen's differential form of nonlocal elasticity is used which employs a scale (nonlocal) parameter. Within the framework of Rayleigh and Bernoulli-Euler beam theories, including the effect of nonlocality and employing the Fourier sine series together with Stokes' transformation, systems of linear equations are obtained and solved using the coefficient matrices. The combined effects of elastic boundary conditions, elastic foundation, dispersion patterns and volume fractions of carbon nanotubes, and nonlocal parameter are examined by solving eigenvalue problems constructed with Fourier infinite series. Free vibration frequencies are calculated for carbon nanotube-reinforced nanobeams under different rigid or restrained boundary conditions, including Winkler-Pasternak type elastic foundation. A comprehensive parametric study is performed, focusing on various effects for the free vibrational response of the composite nanobeam reinforced with carbon nanotubes. It is concluded that adding a small amount of carbon nanotube material can reinforce the stiffness of the composite nanobeam, and its free vibration performance is significantly affected by the distribution patterns, elastic medium, and boundary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
期刊最新文献
Magnetic structure and colossal dielectric properties in Ga3+ substituted Zn2Y hexaferrites by chemical co-precipitation method Investigation of magneto-optoelectronics properties of Mg1-xMnxS alloys for optoelectronics and spintronic applications Persistence luminescence and thermoluminescence of 260 nm UVC irradiated mixed-phase (BaAl2O4 - BaAl12O19) barium aluminate Synthesis, characterization, electrochemical impedance spectroscopy performance and photodegradation of methylene blue: Mesoporous PEG/TiO2 by sol-gel electrospinning Gradient distribution of cations in rhabdophane La0.27Y0.73PO4·nH2O nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1