均匀和非均匀高度区块阵列的城市湍流边界层内低发生率风廓线的相似性

IF 7.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Building and Environment Pub Date : 2024-09-30 DOI:10.1016/j.buildenv.2024.112138
{"title":"均匀和非均匀高度区块阵列的城市湍流边界层内低发生率风廓线的相似性","authors":"","doi":"10.1016/j.buildenv.2024.112138","DOIUrl":null,"url":null,"abstract":"<div><div>Within urban boundary layers, the safety of pedestrians is markedly affected by wind speed, particularly in urban areas. The characteristics of turbulence above the canopy layers can lead to unpredictable changes in wind speed at the pedestrian level. Therefore, this study analyzes low-occurrence wind speed phenomena above canopy heights for uniform and nonuniform block configurations using wind tunnel experiments (WTE) to understand the background turbulence characteristics which the wind profile is generated by the boundary layer above the canopy. The urban canopy arrays were reproduced using solid blocks arranged in 30 rows in a streamwise direction with a packing density of 25 % at three different heights. An x-type hot-wire anemometer was used to measure the streamwise and vertical velocity components. The low-occurrence values were classified based on wind speed percentiles of 0.1 %, 1.0 %, 99.0 %, and 99.9 % wind speeds. The results demonstrated that above the canopy, there were minor influences of block height variations on the low occurrence factor. The peak factor demonstrated a comparable value between the uniform and nonuniform cases, regardless of the block arrangement. Statistical models based on the Weibull distribution and Gram–Charlier series demonstrating good agreement with the WTE data in predicting the low occurrence and peak factors. This study found that variations in block height have a minor influence on the low occurrence and peak factors within the turbulent boundary layers, implying that we can separate the effect of background turbulence from the local turbulent generation within the urban canopy layers.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Similarity of the low-occurrence wind profiles within urban turbulent boundary layers of uniform and non-uniform height block arrays\",\"authors\":\"\",\"doi\":\"10.1016/j.buildenv.2024.112138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Within urban boundary layers, the safety of pedestrians is markedly affected by wind speed, particularly in urban areas. The characteristics of turbulence above the canopy layers can lead to unpredictable changes in wind speed at the pedestrian level. Therefore, this study analyzes low-occurrence wind speed phenomena above canopy heights for uniform and nonuniform block configurations using wind tunnel experiments (WTE) to understand the background turbulence characteristics which the wind profile is generated by the boundary layer above the canopy. The urban canopy arrays were reproduced using solid blocks arranged in 30 rows in a streamwise direction with a packing density of 25 % at three different heights. An x-type hot-wire anemometer was used to measure the streamwise and vertical velocity components. The low-occurrence values were classified based on wind speed percentiles of 0.1 %, 1.0 %, 99.0 %, and 99.9 % wind speeds. The results demonstrated that above the canopy, there were minor influences of block height variations on the low occurrence factor. The peak factor demonstrated a comparable value between the uniform and nonuniform cases, regardless of the block arrangement. Statistical models based on the Weibull distribution and Gram–Charlier series demonstrating good agreement with the WTE data in predicting the low occurrence and peak factors. This study found that variations in block height have a minor influence on the low occurrence and peak factors within the turbulent boundary layers, implying that we can separate the effect of background turbulence from the local turbulent generation within the urban canopy layers.</div></div>\",\"PeriodicalId\":9273,\"journal\":{\"name\":\"Building and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360132324009806\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360132324009806","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在城市边界层内,行人的安全受到风速的明显影响,特别是在城市地区。顶篷层上方的湍流特性会导致行人层的风速发生不可预测的变化。因此,本研究利用风洞实验(WTE)分析了均匀和非均匀块状配置的顶篷高度上方的低频风速现象,以了解顶篷上方边界层产生风廓线的背景湍流特性。在三个不同的高度上,使用沿流向排列 30 行、堆积密度为 25% 的实心块再现了城市冠层阵列。使用 X 型热线风速计测量流向和垂直速度分量。根据 0.1 %、1.0 %、99.0 % 和 99.9 % 的风速百分位数对低发生值进行了分类。结果表明,在冠层上方,区块高度变化对低发生系数的影响较小。峰值系数在均匀和非均匀情况下显示出相似的值,而与区块排列无关。基于 Weibull 分布和 Gram-Charlier 序列的统计模型在预测低发生率和峰值因子方面与 WTE 数据显示出良好的一致性。这项研究发现,块体高度的变化对湍流边界层内的低发生率和峰值因子影响较小,这意味着我们可以将背景湍流的影响与城市冠层内局部湍流的产生分开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Similarity of the low-occurrence wind profiles within urban turbulent boundary layers of uniform and non-uniform height block arrays
Within urban boundary layers, the safety of pedestrians is markedly affected by wind speed, particularly in urban areas. The characteristics of turbulence above the canopy layers can lead to unpredictable changes in wind speed at the pedestrian level. Therefore, this study analyzes low-occurrence wind speed phenomena above canopy heights for uniform and nonuniform block configurations using wind tunnel experiments (WTE) to understand the background turbulence characteristics which the wind profile is generated by the boundary layer above the canopy. The urban canopy arrays were reproduced using solid blocks arranged in 30 rows in a streamwise direction with a packing density of 25 % at three different heights. An x-type hot-wire anemometer was used to measure the streamwise and vertical velocity components. The low-occurrence values were classified based on wind speed percentiles of 0.1 %, 1.0 %, 99.0 %, and 99.9 % wind speeds. The results demonstrated that above the canopy, there were minor influences of block height variations on the low occurrence factor. The peak factor demonstrated a comparable value between the uniform and nonuniform cases, regardless of the block arrangement. Statistical models based on the Weibull distribution and Gram–Charlier series demonstrating good agreement with the WTE data in predicting the low occurrence and peak factors. This study found that variations in block height have a minor influence on the low occurrence and peak factors within the turbulent boundary layers, implying that we can separate the effect of background turbulence from the local turbulent generation within the urban canopy layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Building and Environment
Building and Environment 工程技术-工程:环境
CiteScore
12.50
自引率
23.00%
发文量
1130
审稿时长
27 days
期刊介绍: Building and Environment, an international journal, is dedicated to publishing original research papers, comprehensive review articles, editorials, and short communications in the fields of building science, urban physics, and human interaction with the indoor and outdoor built environment. The journal emphasizes innovative technologies and knowledge verified through measurement and analysis. It covers environmental performance across various spatial scales, from cities and communities to buildings and systems, fostering collaborative, multi-disciplinary research with broader significance.
期刊最新文献
Indoor environmental quality and subjective perceptions in multi-chair dental offices Indoor moss biomonitoring proving construction-related pollution load from outdoors The efficiency of portable air cleaners in reducing cross-exposure through respiratory aerosols: Effects of flowrate, location, and unit type Evaluating a novel portable semiconductor liquid cooling garment for reducing heat stress of healthcare workers in a hot-humid environment Exploring the potential relationship between cooling green space and built-up area: Analysis of community green space characteristics based on GWPCA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1