利用有限差分法对多孔微通道中的瞬态流动进行数值说明,并利用响应面方法对熵进行统计解释

Pradeep Kumar , A Felicita , Ajaykumar AR , Qasem Al-Mdallal
{"title":"利用有限差分法对多孔微通道中的瞬态流动进行数值说明,并利用响应面方法对熵进行统计解释","authors":"Pradeep Kumar ,&nbsp;A Felicita ,&nbsp;Ajaykumar AR ,&nbsp;Qasem Al-Mdallal","doi":"10.1016/j.padiff.2024.100940","DOIUrl":null,"url":null,"abstract":"<div><div>The current article discloses the influence of the hyperbolic tangent nanofluid on time dependent flow through a microchannel when a magnetic field is applied. The porous medium was incorporated using the Darcy–Forchheimer model. The chemical reaction is explained by Arrhenius activation energy. Temperature is determined by convective boundary conditions. The irreversibility occurring in the flow is analyzed. The modeled problem gives rise to partial differential equations, which are computed by finite difference method. Response surface methodology, an optimization technique, is used to attain the optimal conditions for entropy generated for the flow of fluid. Results of the analysis reveal that concentration decreases with the rise in reaction rate parameter and increases with activation energy parameter. Prandtl and Eckert numbers, with their increase, enhance entropy, and fluid friction irreversibility is at its highest. Perfect co-relation is attained for the model by the response surface methodology, with a co-relation coefficient of 100 %. The Weissenberg number is highly sensitive to change in the present modeling, followed by Darcy and Reynolds numbers. The Reynolds number and Darcy number show positive sensitivity, while the Weissenberg number shows negative sensitivity to the entropy generated.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100940"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical illustration using finite difference method for the transient flow through porous microchannel and statistical interpretation of entropy using response surface methodology\",\"authors\":\"Pradeep Kumar ,&nbsp;A Felicita ,&nbsp;Ajaykumar AR ,&nbsp;Qasem Al-Mdallal\",\"doi\":\"10.1016/j.padiff.2024.100940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The current article discloses the influence of the hyperbolic tangent nanofluid on time dependent flow through a microchannel when a magnetic field is applied. The porous medium was incorporated using the Darcy–Forchheimer model. The chemical reaction is explained by Arrhenius activation energy. Temperature is determined by convective boundary conditions. The irreversibility occurring in the flow is analyzed. The modeled problem gives rise to partial differential equations, which are computed by finite difference method. Response surface methodology, an optimization technique, is used to attain the optimal conditions for entropy generated for the flow of fluid. Results of the analysis reveal that concentration decreases with the rise in reaction rate parameter and increases with activation energy parameter. Prandtl and Eckert numbers, with their increase, enhance entropy, and fluid friction irreversibility is at its highest. Perfect co-relation is attained for the model by the response surface methodology, with a co-relation coefficient of 100 %. The Weissenberg number is highly sensitive to change in the present modeling, followed by Darcy and Reynolds numbers. The Reynolds number and Darcy number show positive sensitivity, while the Weissenberg number shows negative sensitivity to the entropy generated.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100940\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了双曲切线纳米流体在施加磁场时对微通道中随时间变化的流动的影响。采用达西-福克海默(Darcy-Forchheimer)模型纳入了多孔介质。化学反应由阿伦尼乌斯活化能解释。温度由对流边界条件决定。对流动中出现的不可逆现象进行了分析。建模问题产生了偏微分方程,并通过有限差分法进行计算。响应面法是一种优化技术,用于获得流体流动产生熵的最佳条件。分析结果表明,浓度随反应速率参数的增加而降低,随活化能参数的增加而升高。随着普朗特数和埃克特数的增加,熵增大,流体摩擦不可逆性达到最高。通过响应面方法,模型达到了完美的相关性,相关系数为 100%。在本模型中,魏森堡数对变化高度敏感,其次是达西数和雷诺数。雷诺数和达西数显示出正敏感性,而魏森伯格数对所产生的熵显示出负敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical illustration using finite difference method for the transient flow through porous microchannel and statistical interpretation of entropy using response surface methodology
The current article discloses the influence of the hyperbolic tangent nanofluid on time dependent flow through a microchannel when a magnetic field is applied. The porous medium was incorporated using the Darcy–Forchheimer model. The chemical reaction is explained by Arrhenius activation energy. Temperature is determined by convective boundary conditions. The irreversibility occurring in the flow is analyzed. The modeled problem gives rise to partial differential equations, which are computed by finite difference method. Response surface methodology, an optimization technique, is used to attain the optimal conditions for entropy generated for the flow of fluid. Results of the analysis reveal that concentration decreases with the rise in reaction rate parameter and increases with activation energy parameter. Prandtl and Eckert numbers, with their increase, enhance entropy, and fluid friction irreversibility is at its highest. Perfect co-relation is attained for the model by the response surface methodology, with a co-relation coefficient of 100 %. The Weissenberg number is highly sensitive to change in the present modeling, followed by Darcy and Reynolds numbers. The Reynolds number and Darcy number show positive sensitivity, while the Weissenberg number shows negative sensitivity to the entropy generated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
期刊最新文献
Combined buoyancy and Marangoni convective heat transport of CNT-water nanofluid in an open chamber with influence of magnetic field and isothermal solid block Hydromagnetic blood flow through a channel of varying width bounded by porous media of finite thickness Application of the Atangana–Baleanu operator in Caputo sense for numerical solutions of the time-fractional Burgers–Fisher equation using finite difference approaches A rational optimal block hybrid method for enhanced accuracy in solving Lane–Emden equations Multi-parameter-based Box–Behnken design for optimizing energy transfer rate of Darcy–Forchheimer drag and mixed convective nanofluid flow over a permeable vertical surface with activation energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1