Shahid Rafiq , Muhammad Mustahsan , Muhammad Asim , M. Ijaz Khan , Sami Ullah Khan , Furqan Ahmad , M. Waqas , Barno Abdullaeva
{"title":"具有发热效应的幂律流体辐射流计算分析:伽勒金有限元模拟","authors":"Shahid Rafiq , Muhammad Mustahsan , Muhammad Asim , M. Ijaz Khan , Sami Ullah Khan , Furqan Ahmad , M. Waqas , Barno Abdullaeva","doi":"10.1016/j.padiff.2024.100927","DOIUrl":null,"url":null,"abstract":"<div><div>This research aims to presents the free convective flow power law fluid due to vertical cone. The investigation for observing the heat transfer phenomenon is accounted to heat generation and radiative effects. The assumption of variable viscosity is taken into account. A vertical cone induced the flow. The dimensionless variables are followed to attains the simplified form. The numerical computations are performed with help of famous finite element method (FEM). The FEM algorithm is supported with applications of quadratic Lagrange polynomials. The results are confirmed with peak accuracy. The physical aspect of problem is presented in view of shear thickening, shear thinning and viscous material case. A comparative thermal reflection in absence and presence of heat generation have been endorsed. Moreover, the insight of various parameters on Nusselt number is also presented.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100927"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational analysis of radiative flow of power law fluid with heat generation effects: Galerkin finite element simulations\",\"authors\":\"Shahid Rafiq , Muhammad Mustahsan , Muhammad Asim , M. Ijaz Khan , Sami Ullah Khan , Furqan Ahmad , M. Waqas , Barno Abdullaeva\",\"doi\":\"10.1016/j.padiff.2024.100927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research aims to presents the free convective flow power law fluid due to vertical cone. The investigation for observing the heat transfer phenomenon is accounted to heat generation and radiative effects. The assumption of variable viscosity is taken into account. A vertical cone induced the flow. The dimensionless variables are followed to attains the simplified form. The numerical computations are performed with help of famous finite element method (FEM). The FEM algorithm is supported with applications of quadratic Lagrange polynomials. The results are confirmed with peak accuracy. The physical aspect of problem is presented in view of shear thickening, shear thinning and viscous material case. A comparative thermal reflection in absence and presence of heat generation have been endorsed. Moreover, the insight of various parameters on Nusselt number is also presented.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100927\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Computational analysis of radiative flow of power law fluid with heat generation effects: Galerkin finite element simulations
This research aims to presents the free convective flow power law fluid due to vertical cone. The investigation for observing the heat transfer phenomenon is accounted to heat generation and radiative effects. The assumption of variable viscosity is taken into account. A vertical cone induced the flow. The dimensionless variables are followed to attains the simplified form. The numerical computations are performed with help of famous finite element method (FEM). The FEM algorithm is supported with applications of quadratic Lagrange polynomials. The results are confirmed with peak accuracy. The physical aspect of problem is presented in view of shear thickening, shear thinning and viscous material case. A comparative thermal reflection in absence and presence of heat generation have been endorsed. Moreover, the insight of various parameters on Nusselt number is also presented.