Dongmei Xu , Hailin Sun , Nan An , Jun Gao , Lianzheng Zhang , Yixin Ma , Yinglong Wang
{"title":"乙酰丙酸和水与异丙醚和甲基叔丁基醚的液液平衡行为及分子间相互作用","authors":"Dongmei Xu , Hailin Sun , Nan An , Jun Gao , Lianzheng Zhang , Yixin Ma , Yinglong Wang","doi":"10.1016/j.jct.2024.107397","DOIUrl":null,"url":null,"abstract":"<div><div>Levulinic acid (LA) is a crucial bio-based chemical with extensive industrial applications. Due to its significant share in the cost of production, the development of efficient techniques for the separation of LA is essential. Traditional separation using sulphuric acid raises environmental and cost concerns, making liquid–liquid extraction a more sustainable and cost-effective alternative. liquid–liquid equilibrium (LLE) investigation was carried out for two ternary mixtures of water + LA + isopropyl ether / methyl <em>tert</em>-butyl ether (MTBE) at two temperatures and 101.3 kPa. The results indicated that the solvent MTBE, as an extractant, showed a higher partition coefficient and selectivity for LA than isopropyl ether, demonstrating its superior effectiveness in recovering LA. The interaction insights between LA and the extractants were explored using quantum chemistry calculations, which aligned well with the collected results. The ascertained LLE data was modeled using the NRTL equation, achieving the <em>RMSD</em> values below 0.01, demonstrating a good concordance between the collected data and computed values. The fitted NRTL model parameters are conducive to the designing and optimizing the LA separation process.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid-Liquid equilibrium Behavior and intermolecular interactions of Levulinic acid and water with isopropyl ether and methyl Tert-Butyl ether\",\"authors\":\"Dongmei Xu , Hailin Sun , Nan An , Jun Gao , Lianzheng Zhang , Yixin Ma , Yinglong Wang\",\"doi\":\"10.1016/j.jct.2024.107397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Levulinic acid (LA) is a crucial bio-based chemical with extensive industrial applications. Due to its significant share in the cost of production, the development of efficient techniques for the separation of LA is essential. Traditional separation using sulphuric acid raises environmental and cost concerns, making liquid–liquid extraction a more sustainable and cost-effective alternative. liquid–liquid equilibrium (LLE) investigation was carried out for two ternary mixtures of water + LA + isopropyl ether / methyl <em>tert</em>-butyl ether (MTBE) at two temperatures and 101.3 kPa. The results indicated that the solvent MTBE, as an extractant, showed a higher partition coefficient and selectivity for LA than isopropyl ether, demonstrating its superior effectiveness in recovering LA. The interaction insights between LA and the extractants were explored using quantum chemistry calculations, which aligned well with the collected results. The ascertained LLE data was modeled using the NRTL equation, achieving the <em>RMSD</em> values below 0.01, demonstrating a good concordance between the collected data and computed values. The fitted NRTL model parameters are conducive to the designing and optimizing the LA separation process.</div></div>\",\"PeriodicalId\":54867,\"journal\":{\"name\":\"Journal of Chemical Thermodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021961424001502\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961424001502","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
乙酰丙酸(LA)是一种重要的生物基化学品,具有广泛的工业用途。由于其在生产成本中占很大比重,因此开发高效的 LA 分离技术至关重要。在两种温度和 101.3 kPa 条件下,对水 + LA + 异丙醚/甲基叔丁基醚(MTBE)的两种三元混合物进行了液液平衡(LLE)研究。结果表明,与异丙醚相比,作为萃取剂的 MTBE 对 LA 的分配系数和选择性更高,这表明 MTBE 在回收 LA 方面具有更好的效果。利用量子化学计算探讨了 LA 与萃取剂之间的相互作用,结果与收集到的数据十分吻合。使用 NRTL 方程对已确定的 LLE 数据进行建模,RMSD 值低于 0.01,表明收集的数据与计算值之间具有良好的一致性。拟合的 NRTL 模型参数有利于设计和优化 LA 分离过程。
Liquid-Liquid equilibrium Behavior and intermolecular interactions of Levulinic acid and water with isopropyl ether and methyl Tert-Butyl ether
Levulinic acid (LA) is a crucial bio-based chemical with extensive industrial applications. Due to its significant share in the cost of production, the development of efficient techniques for the separation of LA is essential. Traditional separation using sulphuric acid raises environmental and cost concerns, making liquid–liquid extraction a more sustainable and cost-effective alternative. liquid–liquid equilibrium (LLE) investigation was carried out for two ternary mixtures of water + LA + isopropyl ether / methyl tert-butyl ether (MTBE) at two temperatures and 101.3 kPa. The results indicated that the solvent MTBE, as an extractant, showed a higher partition coefficient and selectivity for LA than isopropyl ether, demonstrating its superior effectiveness in recovering LA. The interaction insights between LA and the extractants were explored using quantum chemistry calculations, which aligned well with the collected results. The ascertained LLE data was modeled using the NRTL equation, achieving the RMSD values below 0.01, demonstrating a good concordance between the collected data and computed values. The fitted NRTL model parameters are conducive to the designing and optimizing the LA separation process.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.