用于手语识别的 Tiny YOLO 深度神经网络的硬件加速:综合性能分析

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Integration-The Vlsi Journal Pub Date : 2024-09-26 DOI:10.1016/j.vlsi.2024.102287
Mohita Jaiswal, Abhishek Sharma, Sandeep Saini
{"title":"用于手语识别的 Tiny YOLO 深度神经网络的硬件加速:综合性能分析","authors":"Mohita Jaiswal,&nbsp;Abhishek Sharma,&nbsp;Sandeep Saini","doi":"10.1016/j.vlsi.2024.102287","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we benchmark two automation frameworks, Vitis AI and FINN, for sign language recognition on a Field Programmable Gate Array (FPGA). We conducted an in-depth exploration of both frameworks using Tiny YOLOv2 networks by varying design parameters such as precision, parallelism ratio, etc. Further, a fair baseline comparison is made based on accuracy, speed, and hardware resources. Experimental findings demonstrate that the Vitis AI outperforms the FINN framework and traditional GPU and CPU platforms by achieving significant improvements of 1.08x, 1.7x, and 2.9x in terms of latency. Leveraging Vitis AI, our system achieved a detection speed of 32.7 frames per second (FPS) on the Kria KV260 FPGA with a power consumption rate of 5.6 W and an impressive mean Average Precision (mAP) score of 61.2% on the Hindi Indian Sign Language (ISL) dataset.</div></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102287"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware acceleration of Tiny YOLO deep neural networks for sign language recognition: A comprehensive performance analysis\",\"authors\":\"Mohita Jaiswal,&nbsp;Abhishek Sharma,&nbsp;Sandeep Saini\",\"doi\":\"10.1016/j.vlsi.2024.102287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we benchmark two automation frameworks, Vitis AI and FINN, for sign language recognition on a Field Programmable Gate Array (FPGA). We conducted an in-depth exploration of both frameworks using Tiny YOLOv2 networks by varying design parameters such as precision, parallelism ratio, etc. Further, a fair baseline comparison is made based on accuracy, speed, and hardware resources. Experimental findings demonstrate that the Vitis AI outperforms the FINN framework and traditional GPU and CPU platforms by achieving significant improvements of 1.08x, 1.7x, and 2.9x in terms of latency. Leveraging Vitis AI, our system achieved a detection speed of 32.7 frames per second (FPS) on the Kria KV260 FPGA with a power consumption rate of 5.6 W and an impressive mean Average Precision (mAP) score of 61.2% on the Hindi Indian Sign Language (ISL) dataset.</div></div>\",\"PeriodicalId\":54973,\"journal\":{\"name\":\"Integration-The Vlsi Journal\",\"volume\":\"100 \",\"pages\":\"Article 102287\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integration-The Vlsi Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167926024001512\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926024001512","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们在现场可编程门阵列(FPGA)上对 Vitis AI 和 FINN 这两个自动化框架进行了手语识别基准测试。我们使用 Tiny YOLOv2 网络,通过改变精度、并行比等设计参数,对这两个框架进行了深入探讨。此外,我们还根据精度、速度和硬件资源进行了公平的基线比较。实验结果表明,Vitis AI 的性能优于 FINN 框架以及传统的 GPU 和 CPU 平台,在延迟方面分别显著提高了 1.08 倍、1.7 倍和 2.9 倍。利用 Vitis AI,我们的系统在 Kria KV260 FPGA 上实现了每秒 32.7 帧 (FPS) 的检测速度,功耗仅为 5.6 W,在印地语印度手语 (ISL) 数据集上取得了 61.2% 的平均精确度 (mAP) 高分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hardware acceleration of Tiny YOLO deep neural networks for sign language recognition: A comprehensive performance analysis
In this paper, we benchmark two automation frameworks, Vitis AI and FINN, for sign language recognition on a Field Programmable Gate Array (FPGA). We conducted an in-depth exploration of both frameworks using Tiny YOLOv2 networks by varying design parameters such as precision, parallelism ratio, etc. Further, a fair baseline comparison is made based on accuracy, speed, and hardware resources. Experimental findings demonstrate that the Vitis AI outperforms the FINN framework and traditional GPU and CPU platforms by achieving significant improvements of 1.08x, 1.7x, and 2.9x in terms of latency. Leveraging Vitis AI, our system achieved a detection speed of 32.7 frames per second (FPS) on the Kria KV260 FPGA with a power consumption rate of 5.6 W and an impressive mean Average Precision (mAP) score of 61.2% on the Hindi Indian Sign Language (ISL) dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Integration-The Vlsi Journal
Integration-The Vlsi Journal 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.30%
发文量
107
审稿时长
6 months
期刊介绍: Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics: Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.
期刊最新文献
Design, analysis and application of Non-Hamiltonian conservative chaotic system based on memristor Fixed-time cross-combination synchronization of complex chaotic systems with unknown parameters and perturbations PE-based high throughput and low power polar encoder for 5G-NR PBCH channel Lightweight high-throughput true random number generator based on state switchable ring oscillator A low noise instrument amplifier in 40 nm CMOS with positive feedback loop and DC servo loop for neural signal acquisition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1