Slimane Arbaoui , Ahmed Samet , Ali Ayadi , Tedjani Mesbahi , Romuald Boné
{"title":"一次性锂离子电池健康状态序列预测的双模型方法","authors":"Slimane Arbaoui , Ahmed Samet , Ali Ayadi , Tedjani Mesbahi , Romuald Boné","doi":"10.1016/j.array.2024.100367","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-ion batteries play a crucial role in powering various applications, including Electric Vehicles (EVs), underscoring the importance of accurately estimating their State Of Health (SOH) throughout their operational lifespan. This paper introduces two novel models: a Transformer (TOPS-SoH) and a Long Short-Term Memory based (LSTM-OSoH) for One-shot Prediction of SOH. The LSTM-OSoHexcels in accuracy, achieving a Masked Mean Absolute Error (MMAE) of less than 0.01 for precise SOH estimation, while the TOPS-SoHdemonstrates simplicity and efficiency, with accuracy comparable to state-of-the-art models. The TOPS-SoHmodel also offers additional interpretability by providing insights into the attention scores between inputs and outputs, highlighting the cycles used for estimation. These models were trained using the MIT battery dataset, with auto-encoders employed to reduce the dimensionality of the input data. Additionally, the models’ effectiveness was validated against a Bidirectional LSTM (<em>BiLSTM</em>) baseline, demonstrating superior performance in terms of lower MMAE, MMSE, and MAPE values, making them highly suitable for integration into Battery Management Systems (BMS). These findings contribute to advancing SOH estimation up to the End Of Life (EOL), which is crucial for ensuring the reliability and longevity of lithium-ion batteries in diverse applications.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"24 ","pages":"Article 100367"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-model approach for one-shot lithium-ion battery state of health sequence prediction\",\"authors\":\"Slimane Arbaoui , Ahmed Samet , Ali Ayadi , Tedjani Mesbahi , Romuald Boné\",\"doi\":\"10.1016/j.array.2024.100367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium-ion batteries play a crucial role in powering various applications, including Electric Vehicles (EVs), underscoring the importance of accurately estimating their State Of Health (SOH) throughout their operational lifespan. This paper introduces two novel models: a Transformer (TOPS-SoH) and a Long Short-Term Memory based (LSTM-OSoH) for One-shot Prediction of SOH. The LSTM-OSoHexcels in accuracy, achieving a Masked Mean Absolute Error (MMAE) of less than 0.01 for precise SOH estimation, while the TOPS-SoHdemonstrates simplicity and efficiency, with accuracy comparable to state-of-the-art models. The TOPS-SoHmodel also offers additional interpretability by providing insights into the attention scores between inputs and outputs, highlighting the cycles used for estimation. These models were trained using the MIT battery dataset, with auto-encoders employed to reduce the dimensionality of the input data. Additionally, the models’ effectiveness was validated against a Bidirectional LSTM (<em>BiLSTM</em>) baseline, demonstrating superior performance in terms of lower MMAE, MMSE, and MAPE values, making them highly suitable for integration into Battery Management Systems (BMS). These findings contribute to advancing SOH estimation up to the End Of Life (EOL), which is crucial for ensuring the reliability and longevity of lithium-ion batteries in diverse applications.</div></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":\"24 \",\"pages\":\"Article 100367\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259000562400033X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259000562400033X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Dual-model approach for one-shot lithium-ion battery state of health sequence prediction
Lithium-ion batteries play a crucial role in powering various applications, including Electric Vehicles (EVs), underscoring the importance of accurately estimating their State Of Health (SOH) throughout their operational lifespan. This paper introduces two novel models: a Transformer (TOPS-SoH) and a Long Short-Term Memory based (LSTM-OSoH) for One-shot Prediction of SOH. The LSTM-OSoHexcels in accuracy, achieving a Masked Mean Absolute Error (MMAE) of less than 0.01 for precise SOH estimation, while the TOPS-SoHdemonstrates simplicity and efficiency, with accuracy comparable to state-of-the-art models. The TOPS-SoHmodel also offers additional interpretability by providing insights into the attention scores between inputs and outputs, highlighting the cycles used for estimation. These models were trained using the MIT battery dataset, with auto-encoders employed to reduce the dimensionality of the input data. Additionally, the models’ effectiveness was validated against a Bidirectional LSTM (BiLSTM) baseline, demonstrating superior performance in terms of lower MMAE, MMSE, and MAPE values, making them highly suitable for integration into Battery Management Systems (BMS). These findings contribute to advancing SOH estimation up to the End Of Life (EOL), which is crucial for ensuring the reliability and longevity of lithium-ion batteries in diverse applications.