Shuaiyang Fu , Haibo Li , Liwang Liu , Qian Li , Xiaofeng Li
{"title":"利用波速场反演技术研究爆破诱发损伤区的特征","authors":"Shuaiyang Fu , Haibo Li , Liwang Liu , Qian Li , Xiaofeng Li","doi":"10.1016/j.compgeo.2024.106808","DOIUrl":null,"url":null,"abstract":"<div><div>The rock excavation by drilling and blasting method would lead to damage around the blasting hole, which could significantly affect the long-term stability of surrounding rock mass in tunnel, slope, or bedrock. To qualify the characteristics of blast-induced damage zone, we proposed a wave velocity field inversion imaging method, which combines multistencils fast marching methods and simultaneous iterative reconstructive technique to quickly inverse and quantify the blast-induced cracked zone surrounding the borehole. The finite-discrete element method, which has advantages in simulating the fracture and fragmentation of rocks, was used to simulate the blasting process and acoustic wave testing. The ground vibrations induced by the blasting were monitored simultaneously and the acoustic waveforms are used to invert the wave velocity field before and after blasts. The inverted wave velocity field is compared with the blast-induced cracked zone, and the relationship between the radius of the crushed zone and the cracked zone under different charges was studied. It is found that the ratio of the crushed zone radius and the cracked zone radius decreases with the increasing charge. Moreover, the relationship between the peak particle velocity at 30 m away from the borehole (<em>PPV</em><sub>30</sub>) and the distribution of the cracked zone was determined.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"176 ","pages":"Article 106808"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the characteristics of blast-induced damage zone by using the wave velocity field inversion technique\",\"authors\":\"Shuaiyang Fu , Haibo Li , Liwang Liu , Qian Li , Xiaofeng Li\",\"doi\":\"10.1016/j.compgeo.2024.106808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rock excavation by drilling and blasting method would lead to damage around the blasting hole, which could significantly affect the long-term stability of surrounding rock mass in tunnel, slope, or bedrock. To qualify the characteristics of blast-induced damage zone, we proposed a wave velocity field inversion imaging method, which combines multistencils fast marching methods and simultaneous iterative reconstructive technique to quickly inverse and quantify the blast-induced cracked zone surrounding the borehole. The finite-discrete element method, which has advantages in simulating the fracture and fragmentation of rocks, was used to simulate the blasting process and acoustic wave testing. The ground vibrations induced by the blasting were monitored simultaneously and the acoustic waveforms are used to invert the wave velocity field before and after blasts. The inverted wave velocity field is compared with the blast-induced cracked zone, and the relationship between the radius of the crushed zone and the cracked zone under different charges was studied. It is found that the ratio of the crushed zone radius and the cracked zone radius decreases with the increasing charge. Moreover, the relationship between the peak particle velocity at 30 m away from the borehole (<em>PPV</em><sub>30</sub>) and the distribution of the cracked zone was determined.</div></div>\",\"PeriodicalId\":55217,\"journal\":{\"name\":\"Computers and Geotechnics\",\"volume\":\"176 \",\"pages\":\"Article 106808\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266352X2400747X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X2400747X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Study on the characteristics of blast-induced damage zone by using the wave velocity field inversion technique
The rock excavation by drilling and blasting method would lead to damage around the blasting hole, which could significantly affect the long-term stability of surrounding rock mass in tunnel, slope, or bedrock. To qualify the characteristics of blast-induced damage zone, we proposed a wave velocity field inversion imaging method, which combines multistencils fast marching methods and simultaneous iterative reconstructive technique to quickly inverse and quantify the blast-induced cracked zone surrounding the borehole. The finite-discrete element method, which has advantages in simulating the fracture and fragmentation of rocks, was used to simulate the blasting process and acoustic wave testing. The ground vibrations induced by the blasting were monitored simultaneously and the acoustic waveforms are used to invert the wave velocity field before and after blasts. The inverted wave velocity field is compared with the blast-induced cracked zone, and the relationship between the radius of the crushed zone and the cracked zone under different charges was studied. It is found that the ratio of the crushed zone radius and the cracked zone radius decreases with the increasing charge. Moreover, the relationship between the peak particle velocity at 30 m away from the borehole (PPV30) and the distribution of the cracked zone was determined.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.