多功能串联建筑一体化光伏/供热系统的性能研究及其多目标优化设计策略分析

IF 7.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Building and Environment Pub Date : 2024-09-26 DOI:10.1016/j.buildenv.2024.112126
{"title":"多功能串联建筑一体化光伏/供热系统的性能研究及其多目标优化设计策略分析","authors":"","doi":"10.1016/j.buildenv.2024.112126","DOIUrl":null,"url":null,"abstract":"<div><div>The series-connected building-integrated photovoltaic/thermal (BIPVT) system can significantly increase the terminal temperature and achieve both power generation and heating. However, its utilization of thermal energy is limited. Airborne infectious diseases threaten indoor occupant health. Pathogenic microorganisms can be thermally inactivated, and the effectiveness of inactivation is positively correlated with exposure temperature and duration. Therefore, series-connected BIPVT system has the potential for air thermal disinfection. Based on this, a multifunctional series-connected BIPVT system that provides heating, power generation, and air purification is proposed. However, these three outputs conflict with each other, and there is a lack of optimized design strategies to maximize the system's overall output. In response, this paper develops a multi-objective optimization strategy for the system and optimizes its design across different climate zones. The main content is as follows: (1) Compared with single-stage systems, series systems can significantly improve air purification performance. The series-connected BIPVT system with the best air purification effect can increase the single-pass inactivation ratio to 100 % under the irradiance of 600 W/m<sup>2</sup> (2) The glazed photovoltaic/thermal-glazed solar thermal system has the best thermal performance and air purification performance, the thermal efficiency is 38.1 % and the clean air delivery rate is 98.6 m<sup>3</sup>/h under the irradiance of 800 W/m<sup>2</sup> (3) Compared to single-objective optimization and non-optimized designs, the multi-objective optimization design achieves the highest technique for order of preference similarity to the ideal solution (TOPSIS) score, which is 0.5968.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance investigation of multi-functional series-connected building-integrated photovoltaic/thermal system and analysis of its multi-objective optimization design strategy\",\"authors\":\"\",\"doi\":\"10.1016/j.buildenv.2024.112126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The series-connected building-integrated photovoltaic/thermal (BIPVT) system can significantly increase the terminal temperature and achieve both power generation and heating. However, its utilization of thermal energy is limited. Airborne infectious diseases threaten indoor occupant health. Pathogenic microorganisms can be thermally inactivated, and the effectiveness of inactivation is positively correlated with exposure temperature and duration. Therefore, series-connected BIPVT system has the potential for air thermal disinfection. Based on this, a multifunctional series-connected BIPVT system that provides heating, power generation, and air purification is proposed. However, these three outputs conflict with each other, and there is a lack of optimized design strategies to maximize the system's overall output. In response, this paper develops a multi-objective optimization strategy for the system and optimizes its design across different climate zones. The main content is as follows: (1) Compared with single-stage systems, series systems can significantly improve air purification performance. The series-connected BIPVT system with the best air purification effect can increase the single-pass inactivation ratio to 100 % under the irradiance of 600 W/m<sup>2</sup> (2) The glazed photovoltaic/thermal-glazed solar thermal system has the best thermal performance and air purification performance, the thermal efficiency is 38.1 % and the clean air delivery rate is 98.6 m<sup>3</sup>/h under the irradiance of 800 W/m<sup>2</sup> (3) Compared to single-objective optimization and non-optimized designs, the multi-objective optimization design achieves the highest technique for order of preference similarity to the ideal solution (TOPSIS) score, which is 0.5968.</div></div>\",\"PeriodicalId\":9273,\"journal\":{\"name\":\"Building and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360132324009685\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360132324009685","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

串联式光伏/热建筑一体化(BIPVT)系统可显著提高终端温度,实现发电和供热。然而,它对热能的利用是有限的。空气传播的传染病威胁着室内居住者的健康。病原微生物可被热灭活,灭活效果与暴露温度和持续时间呈正相关。因此,串联 BIPVT 系统具有空气热消毒的潜力。在此基础上,我们提出了一种多功能串联 BIPVT 系统,该系统可提供加热、发电和空气净化功能。然而,这三种输出相互冲突,缺乏优化设计策略来最大化系统的整体输出。为此,本文为该系统开发了一种多目标优化策略,并在不同气候区对其进行优化设计。主要内容如下(1) 与单级系统相比,串联系统能显著提高空气净化性能。空气净化效果最好的串联式 BIPVT 系统在 600 W/m2 的辐照度下可将单级灭活率提高到 100 (2) 釉上光伏/热釉光热系统的热性能和空气净化性能最好,热效率为 38.(3) 与单目标优化设计和非优化设计相比,多目标优化设计的理想解偏好相似度排序技术(TOPSIS)得分最高,为 0.5968。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance investigation of multi-functional series-connected building-integrated photovoltaic/thermal system and analysis of its multi-objective optimization design strategy
The series-connected building-integrated photovoltaic/thermal (BIPVT) system can significantly increase the terminal temperature and achieve both power generation and heating. However, its utilization of thermal energy is limited. Airborne infectious diseases threaten indoor occupant health. Pathogenic microorganisms can be thermally inactivated, and the effectiveness of inactivation is positively correlated with exposure temperature and duration. Therefore, series-connected BIPVT system has the potential for air thermal disinfection. Based on this, a multifunctional series-connected BIPVT system that provides heating, power generation, and air purification is proposed. However, these three outputs conflict with each other, and there is a lack of optimized design strategies to maximize the system's overall output. In response, this paper develops a multi-objective optimization strategy for the system and optimizes its design across different climate zones. The main content is as follows: (1) Compared with single-stage systems, series systems can significantly improve air purification performance. The series-connected BIPVT system with the best air purification effect can increase the single-pass inactivation ratio to 100 % under the irradiance of 600 W/m2 (2) The glazed photovoltaic/thermal-glazed solar thermal system has the best thermal performance and air purification performance, the thermal efficiency is 38.1 % and the clean air delivery rate is 98.6 m3/h under the irradiance of 800 W/m2 (3) Compared to single-objective optimization and non-optimized designs, the multi-objective optimization design achieves the highest technique for order of preference similarity to the ideal solution (TOPSIS) score, which is 0.5968.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Building and Environment
Building and Environment 工程技术-工程:环境
CiteScore
12.50
自引率
23.00%
发文量
1130
审稿时长
27 days
期刊介绍: Building and Environment, an international journal, is dedicated to publishing original research papers, comprehensive review articles, editorials, and short communications in the fields of building science, urban physics, and human interaction with the indoor and outdoor built environment. The journal emphasizes innovative technologies and knowledge verified through measurement and analysis. It covers environmental performance across various spatial scales, from cities and communities to buildings and systems, fostering collaborative, multi-disciplinary research with broader significance.
期刊最新文献
Indoor environmental quality and subjective perceptions in multi-chair dental offices Indoor moss biomonitoring proving construction-related pollution load from outdoors The efficiency of portable air cleaners in reducing cross-exposure through respiratory aerosols: Effects of flowrate, location, and unit type Evaluating a novel portable semiconductor liquid cooling garment for reducing heat stress of healthcare workers in a hot-humid environment Exploring the potential relationship between cooling green space and built-up area: Analysis of community green space characteristics based on GWPCA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1