用于复杂农业环境的空间激光雷达里程测量和制图 - Spatial FieldLOAM

IF 4.4 1区 农林科学 Q1 AGRICULTURAL ENGINEERING Biosystems Engineering Pub Date : 2024-10-08 DOI:10.1016/j.biosystemseng.2024.09.020
Jurij Rakun , František Duchoň , Peter Lepej
{"title":"用于复杂农业环境的空间激光雷达里程测量和制图 - Spatial FieldLOAM","authors":"Jurij Rakun ,&nbsp;František Duchoň ,&nbsp;Peter Lepej","doi":"10.1016/j.biosystemseng.2024.09.020","DOIUrl":null,"url":null,"abstract":"<div><div>The challenge of autonomous driving in natural environments, without the use of GNSS devices is addressed. It utilises the readings from a multichannel LiDAR, supported by IMU, and enhances the capabilities of the FieldSLAM algorithm to establish an independent localisation and mapping system. This system is designed for performing specific tasks in predefined agricultural areas, employing incremental LOAM techniques. By comparing the outcomes of the novel Spatial FieldLOAM algorithm with the assistance of a precise Inertial Measurement Unit (IMU) and using the state-of-the-art RTK-GPS system as the ground truth, it is concluded that the Spatial FieldLOAM achieves an error rate of 5.5%, whereas the Xsens IMU yields an error rate of 5.7%. In terms of Euclidean distances to the final RTK GPS supported localisation on a 68.7 m test run, the error rates are 3.78 m and 3.92 m, respectively, or 0.0038 m per epoch for the Spatial FieldLOAM algorithm during non-vegetation season. The tests were also conducted during the vegetation season in a total length of 210 m, revealing a difference of 3.07 m distance between the final position calculated by the Spatial FieldLOAM and Xsens IMU.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"248 ","pages":"Pages 58-72"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial LiDAR odometry and mapping for complex agricultural environments - Spatial FieldLOAM\",\"authors\":\"Jurij Rakun ,&nbsp;František Duchoň ,&nbsp;Peter Lepej\",\"doi\":\"10.1016/j.biosystemseng.2024.09.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The challenge of autonomous driving in natural environments, without the use of GNSS devices is addressed. It utilises the readings from a multichannel LiDAR, supported by IMU, and enhances the capabilities of the FieldSLAM algorithm to establish an independent localisation and mapping system. This system is designed for performing specific tasks in predefined agricultural areas, employing incremental LOAM techniques. By comparing the outcomes of the novel Spatial FieldLOAM algorithm with the assistance of a precise Inertial Measurement Unit (IMU) and using the state-of-the-art RTK-GPS system as the ground truth, it is concluded that the Spatial FieldLOAM achieves an error rate of 5.5%, whereas the Xsens IMU yields an error rate of 5.7%. In terms of Euclidean distances to the final RTK GPS supported localisation on a 68.7 m test run, the error rates are 3.78 m and 3.92 m, respectively, or 0.0038 m per epoch for the Spatial FieldLOAM algorithm during non-vegetation season. The tests were also conducted during the vegetation season in a total length of 210 m, revealing a difference of 3.07 m distance between the final position calculated by the Spatial FieldLOAM and Xsens IMU.</div></div>\",\"PeriodicalId\":9173,\"journal\":{\"name\":\"Biosystems Engineering\",\"volume\":\"248 \",\"pages\":\"Pages 58-72\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1537511024002228\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024002228","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在不使用全球导航卫星系统(GNSS)设备的情况下,解决了在自然环境中自动驾驶的难题。它利用多通道激光雷达的读数,在 IMU 的支持下,增强了 FieldSLAM 算法的功能,从而建立了一个独立的定位和绘图系统。该系统设计用于在预定义的农业区域执行特定任务,并采用增量 LOAM 技术。在精确惯性测量单元(IMU)的协助下,使用最先进的 RTK-GPS 系统作为地面实况,通过比较新型空间现场 LOAM 算法的结果,得出的结论是空间现场 LOAM 的误差率为 5.5%,而 Xsens IMU 的误差率为 5.7%。在 68.7 米的测试运行中,就与最终 RTK GPS 支持的定位之间的欧氏距离而言,在非植被覆盖季节,Spatial FieldLOAM 算法的误差率分别为 3.78 米和 3.92 米,或每历元 0.0038 米。在植被覆盖季节还进行了总长度为 210 米的测试,结果显示 Spatial FieldLOAM 和 Xsens IMU 计算的最终位置距离相差 3.07 米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial LiDAR odometry and mapping for complex agricultural environments - Spatial FieldLOAM
The challenge of autonomous driving in natural environments, without the use of GNSS devices is addressed. It utilises the readings from a multichannel LiDAR, supported by IMU, and enhances the capabilities of the FieldSLAM algorithm to establish an independent localisation and mapping system. This system is designed for performing specific tasks in predefined agricultural areas, employing incremental LOAM techniques. By comparing the outcomes of the novel Spatial FieldLOAM algorithm with the assistance of a precise Inertial Measurement Unit (IMU) and using the state-of-the-art RTK-GPS system as the ground truth, it is concluded that the Spatial FieldLOAM achieves an error rate of 5.5%, whereas the Xsens IMU yields an error rate of 5.7%. In terms of Euclidean distances to the final RTK GPS supported localisation on a 68.7 m test run, the error rates are 3.78 m and 3.92 m, respectively, or 0.0038 m per epoch for the Spatial FieldLOAM algorithm during non-vegetation season. The tests were also conducted during the vegetation season in a total length of 210 m, revealing a difference of 3.07 m distance between the final position calculated by the Spatial FieldLOAM and Xsens IMU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosystems Engineering
Biosystems Engineering 农林科学-农业工程
CiteScore
10.60
自引率
7.80%
发文量
239
审稿时长
53 days
期刊介绍: Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.
期刊最新文献
Egg characteristics assessment as an enabler for in-ovo sexing technology: A review Analysis of three-dimensional cake thickness structure characteristics in a screen filter for drip irrigation based on the CFD‒DEM coupling method Stiffness evaluation of semi-rigid connection using steel clamps in plastic greenhouse structure Vacuum suction end-effector development for robotic harvesters of fresh market apples Optimisation design and experimental analysis of rotary blade reinforcing ribs using DEM-FEM techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1