战略投资:氢时代欧洲能源安全的电解与存储之争

IF 9.3 2区 经济学 Q1 ECONOMICS Energy Policy Pub Date : 2024-10-07 DOI:10.1016/j.enpol.2024.114371
Ange Blanchard
{"title":"战略投资:氢时代欧洲能源安全的电解与存储之争","authors":"Ange Blanchard","doi":"10.1016/j.enpol.2024.114371","DOIUrl":null,"url":null,"abstract":"<div><div>European hydrogen demand is projected to surge in the upcoming decade, leading to a potential risk of excessive dependence on imports, which may exceed 50% by 2035. This paper compares two strategies to tackle this hydrogen import disruption vulnerability. The first option is to invest in Underground Hydrogen Storage (UHS) for strategic stockpiling. The second option is to increase electrolysis capacity to inflate local production potential. We identify the most effective investment strategies for Central Western Europe (CWE) in 2035 by implementing a Multistage Stochastic Dynamic Programming (MSDP) model. Results show electrolysis outperforms UHS in preventing import disruption risks, although the two technologies are complementary. Notably, electrolysis represents 95% of the strategic investment budget. The overall cost of the optimal strategic investment amounts to 5–10% of the total investment in hydrogen infrastructure.</div></div>","PeriodicalId":11672,"journal":{"name":"Energy Policy","volume":"195 ","pages":"Article 114371"},"PeriodicalIF":9.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategic investments: Electrolysis vs. storage for Europe’s energy security in the hydrogen era\",\"authors\":\"Ange Blanchard\",\"doi\":\"10.1016/j.enpol.2024.114371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>European hydrogen demand is projected to surge in the upcoming decade, leading to a potential risk of excessive dependence on imports, which may exceed 50% by 2035. This paper compares two strategies to tackle this hydrogen import disruption vulnerability. The first option is to invest in Underground Hydrogen Storage (UHS) for strategic stockpiling. The second option is to increase electrolysis capacity to inflate local production potential. We identify the most effective investment strategies for Central Western Europe (CWE) in 2035 by implementing a Multistage Stochastic Dynamic Programming (MSDP) model. Results show electrolysis outperforms UHS in preventing import disruption risks, although the two technologies are complementary. Notably, electrolysis represents 95% of the strategic investment budget. The overall cost of the optimal strategic investment amounts to 5–10% of the total investment in hydrogen infrastructure.</div></div>\",\"PeriodicalId\":11672,\"journal\":{\"name\":\"Energy Policy\",\"volume\":\"195 \",\"pages\":\"Article 114371\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Policy\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301421524003914\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Policy","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301421524003914","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

预计未来十年欧洲的氢气需求量将激增,这将导致过度依赖进口的潜在风险,到 2035 年进口量可能超过 50%。本文比较了应对氢进口中断脆弱性的两种策略。第一个方案是投资地下氢储存(UHS),进行战略储备。第二种方案是提高电解能力,扩大本地生产潜力。我们通过实施多阶段随机动态编程 (MSDP) 模型,确定了 2035 年中西欧 (CWE) 最有效的投资战略。结果表明,在防止进口中断风险方面,电解技术优于超高压输电技术,尽管这两种技术具有互补性。值得注意的是,电解技术占战略投资预算的 95%。最优战略投资的总成本占氢基础设施总投资的 5-10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategic investments: Electrolysis vs. storage for Europe’s energy security in the hydrogen era
European hydrogen demand is projected to surge in the upcoming decade, leading to a potential risk of excessive dependence on imports, which may exceed 50% by 2035. This paper compares two strategies to tackle this hydrogen import disruption vulnerability. The first option is to invest in Underground Hydrogen Storage (UHS) for strategic stockpiling. The second option is to increase electrolysis capacity to inflate local production potential. We identify the most effective investment strategies for Central Western Europe (CWE) in 2035 by implementing a Multistage Stochastic Dynamic Programming (MSDP) model. Results show electrolysis outperforms UHS in preventing import disruption risks, although the two technologies are complementary. Notably, electrolysis represents 95% of the strategic investment budget. The overall cost of the optimal strategic investment amounts to 5–10% of the total investment in hydrogen infrastructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Policy
Energy Policy 管理科学-环境科学
CiteScore
17.30
自引率
5.60%
发文量
540
审稿时长
7.9 months
期刊介绍: Energy policy is the manner in which a given entity (often governmental) has decided to address issues of energy development including energy conversion, distribution and use as well as reduction of greenhouse gas emissions in order to contribute to climate change mitigation. The attributes of energy policy may include legislation, international treaties, incentives to investment, guidelines for energy conservation, taxation and other public policy techniques. Energy policy is closely related to climate change policy because totalled worldwide the energy sector emits more greenhouse gas than other sectors.
期刊最新文献
Policy implications of implementing residential PV solar energy systems in developing regions A multi-phase qualitative study on consumers’ barriers and drivers of electric vehicle use in India: Policy implications The impact of digital economy on energy rebound effect in China: A stochastic energy demand frontier approach Editorial Board The value of decentral flexibility in nodal market design – A case study for Europe 2030
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1