Kaidi Li , Bin Tang , Wenyuan Zhang , Heng Zhang , Jinhua Dai , Mengqi Zhang , Zhenshun Zhang , Xichuan Cao , Jiangkun Fan , Jinshan Li
{"title":"IN625 超合金氢辅助疲劳裂纹生长行为的实验和晶体塑性研究","authors":"Kaidi Li , Bin Tang , Wenyuan Zhang , Heng Zhang , Jinhua Dai , Mengqi Zhang , Zhenshun Zhang , Xichuan Cao , Jiangkun Fan , Jinshan Li","doi":"10.1016/j.corsci.2024.112480","DOIUrl":null,"url":null,"abstract":"<div><div>The fatigue crack growth (FCG) behavior of IN625 alloy was studied by experimental methods and crystal plasticity simulations. Based on the experimental FCG rate curves, it is evident that hydrogen significantly accelerates FCG, and calculations show that this acceleration factor reaches a maximum of 2.41 times at 1 Hz. Hydrogen results in smaller plastic deformation zones compared to hydrogen-free samples. The interaction between hydrogen and dislocations leads to the nucleation of micro-voids along the slip planes, promoting the hydrogen-assisted cracking process. Lower loading frequencies results in finer fatigue striations and more pronounced hydrogen embrittlement features on the fracture surface.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"240 ","pages":"Article 112480"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and crystal plasticity study on hydrogen-assisted fatigue crack growth behavior of IN625 superalloy\",\"authors\":\"Kaidi Li , Bin Tang , Wenyuan Zhang , Heng Zhang , Jinhua Dai , Mengqi Zhang , Zhenshun Zhang , Xichuan Cao , Jiangkun Fan , Jinshan Li\",\"doi\":\"10.1016/j.corsci.2024.112480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The fatigue crack growth (FCG) behavior of IN625 alloy was studied by experimental methods and crystal plasticity simulations. Based on the experimental FCG rate curves, it is evident that hydrogen significantly accelerates FCG, and calculations show that this acceleration factor reaches a maximum of 2.41 times at 1 Hz. Hydrogen results in smaller plastic deformation zones compared to hydrogen-free samples. The interaction between hydrogen and dislocations leads to the nucleation of micro-voids along the slip planes, promoting the hydrogen-assisted cracking process. Lower loading frequencies results in finer fatigue striations and more pronounced hydrogen embrittlement features on the fracture surface.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"240 \",\"pages\":\"Article 112480\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X24006759\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X24006759","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental and crystal plasticity study on hydrogen-assisted fatigue crack growth behavior of IN625 superalloy
The fatigue crack growth (FCG) behavior of IN625 alloy was studied by experimental methods and crystal plasticity simulations. Based on the experimental FCG rate curves, it is evident that hydrogen significantly accelerates FCG, and calculations show that this acceleration factor reaches a maximum of 2.41 times at 1 Hz. Hydrogen results in smaller plastic deformation zones compared to hydrogen-free samples. The interaction between hydrogen and dislocations leads to the nucleation of micro-voids along the slip planes, promoting the hydrogen-assisted cracking process. Lower loading frequencies results in finer fatigue striations and more pronounced hydrogen embrittlement features on the fracture surface.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.