测量肥料流以促进循环性和抵御气候变化的能力

IF 9.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Current Opinion in Green and Sustainable Chemistry Pub Date : 2024-09-21 DOI:10.1016/j.cogsc.2024.100971
Christian Bux , Johann Fellner , Demet Seyhan , Vera Amicarelli
{"title":"测量肥料流以促进循环性和抵御气候变化的能力","authors":"Christian Bux ,&nbsp;Johann Fellner ,&nbsp;Demet Seyhan ,&nbsp;Vera Amicarelli","doi":"10.1016/j.cogsc.2024.100971","DOIUrl":null,"url":null,"abstract":"<div><div>Circularity strategies addressing climate change and resource depletion depend on evaluating material and energy flows between biosphere and technosphere. Material flow analysis (MFA) is essential for measuring the physical economy of socioeconomic metabolism, yet its widespread adoption is limited by uncertainties, incomplete inventories, and lack of expertise at the organizational level. Despite this, MFA is gaining traction as a decision-making tool also within companies. This research examines MFA's application to fertilizer flows in green chemistry, and circularity indicators to promote healthy soils rich in organic matter/biodiversity while minimizing environmental impacts. The first substance flow analysis indicators for phosphorus management were introduced in 2006, highlighting losses, stocks, and unaccounted-for flows, but the challenge remains to apply a harmonized model across multiple cases. In nitrogen metabolism, studies estimate hidden flows and storage in the agri-food system, and corporate efforts leveraging MFA can spur similar developments in nutrient flow management, particularly in agriculture.</div></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"50 ","pages":"Article 100971"},"PeriodicalIF":9.3000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of fertilizer flows to advance circularity and resilience to climate change\",\"authors\":\"Christian Bux ,&nbsp;Johann Fellner ,&nbsp;Demet Seyhan ,&nbsp;Vera Amicarelli\",\"doi\":\"10.1016/j.cogsc.2024.100971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Circularity strategies addressing climate change and resource depletion depend on evaluating material and energy flows between biosphere and technosphere. Material flow analysis (MFA) is essential for measuring the physical economy of socioeconomic metabolism, yet its widespread adoption is limited by uncertainties, incomplete inventories, and lack of expertise at the organizational level. Despite this, MFA is gaining traction as a decision-making tool also within companies. This research examines MFA's application to fertilizer flows in green chemistry, and circularity indicators to promote healthy soils rich in organic matter/biodiversity while minimizing environmental impacts. The first substance flow analysis indicators for phosphorus management were introduced in 2006, highlighting losses, stocks, and unaccounted-for flows, but the challenge remains to apply a harmonized model across multiple cases. In nitrogen metabolism, studies estimate hidden flows and storage in the agri-food system, and corporate efforts leveraging MFA can spur similar developments in nutrient flow management, particularly in agriculture.</div></div>\",\"PeriodicalId\":54228,\"journal\":{\"name\":\"Current Opinion in Green and Sustainable Chemistry\",\"volume\":\"50 \",\"pages\":\"Article 100971\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Green and Sustainable Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452223624000920\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452223624000920","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

应对气候变化和资源枯竭的循环战略取决于对生物圈和技术圈之间的物质流和能量流进行评估。物质流分析(MFA)对于衡量社会经济新陈代谢的物质经济性至关重要,但其广泛应用受到不确定性、库存不完整以及组织层面专业知识缺乏的限制。尽管如此,作为一种决策工具,MFA 在公司内部也越来越受到重视。本研究探讨了 MFA 在绿色化学肥料流中的应用,以及循环性指标,以促进富含有机物/生物多样性的健康土壤,同时最大限度地减少对环境的影响。2006 年首次推出了磷管理的物质流分析指标,强调了损失、存量和未计流量,但在多种情况下应用统一模型仍是一项挑战。在氮代谢方面,研究估算了农业食品系统中的隐性流量和储存量,利用 MFA 的企业努力可以促进养分流管理的类似发展,特别是在农业领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measurement of fertilizer flows to advance circularity and resilience to climate change
Circularity strategies addressing climate change and resource depletion depend on evaluating material and energy flows between biosphere and technosphere. Material flow analysis (MFA) is essential for measuring the physical economy of socioeconomic metabolism, yet its widespread adoption is limited by uncertainties, incomplete inventories, and lack of expertise at the organizational level. Despite this, MFA is gaining traction as a decision-making tool also within companies. This research examines MFA's application to fertilizer flows in green chemistry, and circularity indicators to promote healthy soils rich in organic matter/biodiversity while minimizing environmental impacts. The first substance flow analysis indicators for phosphorus management were introduced in 2006, highlighting losses, stocks, and unaccounted-for flows, but the challenge remains to apply a harmonized model across multiple cases. In nitrogen metabolism, studies estimate hidden flows and storage in the agri-food system, and corporate efforts leveraging MFA can spur similar developments in nutrient flow management, particularly in agriculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.00
自引率
2.20%
发文量
140
审稿时长
103 days
期刊介绍: The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.
期刊最新文献
Recent advances in plasma-based methane reforming for syngas production Green ammonia synthesis technology that does not require H2 gas: Reaction technology and prospects for ammonia synthesis using H2O as a direct hydrogen source Machine learning to support prospective life cycle assessment of emerging chemical technologies Plasma treating water for nitrate based nitrogen fertilizer - A review of recent device designs Atmospheric-pressure plasmas for NOx production: Short review on current status
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1