Alireza Moallemi , Alberto Alberello , Iris Thurnherr , Guangyu Li , Zamin A. Kanji , Filippo Bergamasco , Roman Pohorsky , Filippo Nelli , Alessandro Toffoli , Julia Schmale
{"title":"北冰洋大气气溶胶与海况之间的联系","authors":"Alireza Moallemi , Alberto Alberello , Iris Thurnherr , Guangyu Li , Zamin A. Kanji , Filippo Bergamasco , Roman Pohorsky , Filippo Nelli , Alessandro Toffoli , Julia Schmale","doi":"10.1016/j.atmosenv.2024.120844","DOIUrl":null,"url":null,"abstract":"<div><div>Sea spray emission is the largest mass flux of aerosols to the atmosphere with important impact on atmospheric radiative transfer. However, large uncertainties still exit in constraining this mass flux and its climate forcing, in particular in the Arctic, where sea ice and relatively low wind speed in summer constitute a significantly different regime compared to the global ocean. Sea state conditions and marine boundary layer stability are also critical variables, but their contribution is often overlooked. Here we present concurrent observations of sea state using a novel stereo camera system, of sea spray through coarse mode aerosols, and of meteorological variables to determine boundary layer stability in the Barents and Kara Seas during the 2021 Arctic Century Expedition. Our findings reveal that aerosol concentrations were highest over open waters, closely correlating with wave height, followed by wind speed, wave steepness, and wave age. Notably, these correlations were stronger under unstable marine boundary layer conditions, reflecting immediate sea spray generation. By analysing various combinations of sea and atmospheric variables, we identified the wave height Reynolds number as the most effective indicator of atmospheric sea spray concentration, explaining 57% of its variability in unstable conditions. Our study underscores the need to consider sea state, wind, and boundary layer conditions together to accurately estimate atmospheric sea spray concentrations in the Arctic.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"338 ","pages":"Article 120844"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Links between atmospheric aerosols and sea state in the Arctic Ocean\",\"authors\":\"Alireza Moallemi , Alberto Alberello , Iris Thurnherr , Guangyu Li , Zamin A. Kanji , Filippo Bergamasco , Roman Pohorsky , Filippo Nelli , Alessandro Toffoli , Julia Schmale\",\"doi\":\"10.1016/j.atmosenv.2024.120844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sea spray emission is the largest mass flux of aerosols to the atmosphere with important impact on atmospheric radiative transfer. However, large uncertainties still exit in constraining this mass flux and its climate forcing, in particular in the Arctic, where sea ice and relatively low wind speed in summer constitute a significantly different regime compared to the global ocean. Sea state conditions and marine boundary layer stability are also critical variables, but their contribution is often overlooked. Here we present concurrent observations of sea state using a novel stereo camera system, of sea spray through coarse mode aerosols, and of meteorological variables to determine boundary layer stability in the Barents and Kara Seas during the 2021 Arctic Century Expedition. Our findings reveal that aerosol concentrations were highest over open waters, closely correlating with wave height, followed by wind speed, wave steepness, and wave age. Notably, these correlations were stronger under unstable marine boundary layer conditions, reflecting immediate sea spray generation. By analysing various combinations of sea and atmospheric variables, we identified the wave height Reynolds number as the most effective indicator of atmospheric sea spray concentration, explaining 57% of its variability in unstable conditions. Our study underscores the need to consider sea state, wind, and boundary layer conditions together to accurately estimate atmospheric sea spray concentrations in the Arctic.</div></div>\",\"PeriodicalId\":250,\"journal\":{\"name\":\"Atmospheric Environment\",\"volume\":\"338 \",\"pages\":\"Article 120844\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1352231024005193\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024005193","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Links between atmospheric aerosols and sea state in the Arctic Ocean
Sea spray emission is the largest mass flux of aerosols to the atmosphere with important impact on atmospheric radiative transfer. However, large uncertainties still exit in constraining this mass flux and its climate forcing, in particular in the Arctic, where sea ice and relatively low wind speed in summer constitute a significantly different regime compared to the global ocean. Sea state conditions and marine boundary layer stability are also critical variables, but their contribution is often overlooked. Here we present concurrent observations of sea state using a novel stereo camera system, of sea spray through coarse mode aerosols, and of meteorological variables to determine boundary layer stability in the Barents and Kara Seas during the 2021 Arctic Century Expedition. Our findings reveal that aerosol concentrations were highest over open waters, closely correlating with wave height, followed by wind speed, wave steepness, and wave age. Notably, these correlations were stronger under unstable marine boundary layer conditions, reflecting immediate sea spray generation. By analysing various combinations of sea and atmospheric variables, we identified the wave height Reynolds number as the most effective indicator of atmospheric sea spray concentration, explaining 57% of its variability in unstable conditions. Our study underscores the need to consider sea state, wind, and boundary layer conditions together to accurately estimate atmospheric sea spray concentrations in the Arctic.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.