Shenglun Wu , Christopher P. Alaimo , Peter G. Green , Thomas M. Young , Yusheng Zhao , Shang Liu , Toshihiro Kuwayama , Michael J. Kleeman
{"title":"RECAP-CA 期间南海岸空气盆地 (SoCAB) 挥发性有机化合物 (VOC) 的来源分配","authors":"Shenglun Wu , Christopher P. Alaimo , Peter G. Green , Thomas M. Young , Yusheng Zhao , Shang Liu , Toshihiro Kuwayama , Michael J. Kleeman","doi":"10.1016/j.atmosenv.2024.120847","DOIUrl":null,"url":null,"abstract":"<div><div>Ozone (O<sub>3</sub>) concentrations in the South Coast Air Basin (SoCAB) surrounding Los Angeles remain at unhealthy levels despite multiple decades of control programs designed to reduce emissions of precursor Volatile Organic Compounds (VOCs). Here we report on comprehensive VOC measurements made at Redlands, which has the highest measured O<sub>3</sub> concentrations in SoCAB, as part of the Re-Evaluating the Chemistry of Air Pollutants in California (RECAP-CA) field campaign (July–October 2021). Positive matrix factorization (PMF) analysis was applied to identify nine VOC factors. A photochemical chamber model initialized by field measurements was configured with a tagging technique to quantify the VOC factor contributions to O<sub>3</sub> formation in Redlands. Biogenic VOCs (BVOCs) made the largest contribution (26.6%) to O<sub>3</sub> formation, followed by traffic VOCs (21.2%), volatile chemical products (VCPs) (19%), and plant decomposition (14.9%). High O<sub>3</sub> episodes were not driven by increased VOC emissions from any single source, but rather were associated with stagnation events that concentrated VOCs from all sources and high temperature days that enhanced O<sub>3</sub> formation efficiency. This implies that VOC controls optimized to reduce O<sub>3</sub> concentrations would look similar in both the NO<sub>x</sub>-limited and VOC-limited regimes that can occur at Redlands. These results suggest that control strategies that reduce VOC and NO<sub>x</sub> emissions from the on-road vehicle fleet, such as increasing electrification, may yield O<sub>3</sub> reductions on days in both the NO<sub>x</sub>-limited and VOC-limited chemical regimes at Redlands.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"338 ","pages":"Article 120847"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Source apportionment of Volatile Organic Compounds (VOCs) in the South Coast Air Basin (SoCAB) During RECAP-CA\",\"authors\":\"Shenglun Wu , Christopher P. Alaimo , Peter G. Green , Thomas M. Young , Yusheng Zhao , Shang Liu , Toshihiro Kuwayama , Michael J. Kleeman\",\"doi\":\"10.1016/j.atmosenv.2024.120847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ozone (O<sub>3</sub>) concentrations in the South Coast Air Basin (SoCAB) surrounding Los Angeles remain at unhealthy levels despite multiple decades of control programs designed to reduce emissions of precursor Volatile Organic Compounds (VOCs). Here we report on comprehensive VOC measurements made at Redlands, which has the highest measured O<sub>3</sub> concentrations in SoCAB, as part of the Re-Evaluating the Chemistry of Air Pollutants in California (RECAP-CA) field campaign (July–October 2021). Positive matrix factorization (PMF) analysis was applied to identify nine VOC factors. A photochemical chamber model initialized by field measurements was configured with a tagging technique to quantify the VOC factor contributions to O<sub>3</sub> formation in Redlands. Biogenic VOCs (BVOCs) made the largest contribution (26.6%) to O<sub>3</sub> formation, followed by traffic VOCs (21.2%), volatile chemical products (VCPs) (19%), and plant decomposition (14.9%). High O<sub>3</sub> episodes were not driven by increased VOC emissions from any single source, but rather were associated with stagnation events that concentrated VOCs from all sources and high temperature days that enhanced O<sub>3</sub> formation efficiency. This implies that VOC controls optimized to reduce O<sub>3</sub> concentrations would look similar in both the NO<sub>x</sub>-limited and VOC-limited regimes that can occur at Redlands. These results suggest that control strategies that reduce VOC and NO<sub>x</sub> emissions from the on-road vehicle fleet, such as increasing electrification, may yield O<sub>3</sub> reductions on days in both the NO<sub>x</sub>-limited and VOC-limited chemical regimes at Redlands.</div></div>\",\"PeriodicalId\":250,\"journal\":{\"name\":\"Atmospheric Environment\",\"volume\":\"338 \",\"pages\":\"Article 120847\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1352231024005223\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024005223","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Source apportionment of Volatile Organic Compounds (VOCs) in the South Coast Air Basin (SoCAB) During RECAP-CA
Ozone (O3) concentrations in the South Coast Air Basin (SoCAB) surrounding Los Angeles remain at unhealthy levels despite multiple decades of control programs designed to reduce emissions of precursor Volatile Organic Compounds (VOCs). Here we report on comprehensive VOC measurements made at Redlands, which has the highest measured O3 concentrations in SoCAB, as part of the Re-Evaluating the Chemistry of Air Pollutants in California (RECAP-CA) field campaign (July–October 2021). Positive matrix factorization (PMF) analysis was applied to identify nine VOC factors. A photochemical chamber model initialized by field measurements was configured with a tagging technique to quantify the VOC factor contributions to O3 formation in Redlands. Biogenic VOCs (BVOCs) made the largest contribution (26.6%) to O3 formation, followed by traffic VOCs (21.2%), volatile chemical products (VCPs) (19%), and plant decomposition (14.9%). High O3 episodes were not driven by increased VOC emissions from any single source, but rather were associated with stagnation events that concentrated VOCs from all sources and high temperature days that enhanced O3 formation efficiency. This implies that VOC controls optimized to reduce O3 concentrations would look similar in both the NOx-limited and VOC-limited regimes that can occur at Redlands. These results suggest that control strategies that reduce VOC and NOx emissions from the on-road vehicle fleet, such as increasing electrification, may yield O3 reductions on days in both the NOx-limited and VOC-limited chemical regimes at Redlands.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.