{"title":"全面评估不同菜系烹饪油烟对大气的影响和健康风险","authors":"Junfeng Zhang , Wenjiao Duan , Shuiyuan Cheng , Chuanda Wang","doi":"10.1016/j.atmosenv.2024.120837","DOIUrl":null,"url":null,"abstract":"<div><div>Pollutants emitted by catering enterprises pose a significant threat to the environment and public health. In this study, based on a systematic analysis of volatile organic compound (VOC) emission characteristics of different cuisines, the contribution of cooking emissions from catering enterprises to the PM<sub>2.5</sub> and O<sub>3</sub> concentrations in the atmosphere was evaluated using generation potential calculations and WRF-CAMx simulations. The health exposure risks of VOCs in kitchen breathing areas and those of PM<sub>2.5</sub> and O<sub>3</sub> contributed by the catering enterprises were evaluated. The generation potential calculation results showed that the catering enterprises exhibit 2.21–5.00 gO<sub>3</sub>/gVOCs of ozone formation potential (OFP) and 0.07–0.21 gSOA/gVOCs of secondary organic aerosol production potential (SOAP). The WRF-CAMx simulation results indicated that cooking emissions from catering enterprises contribute 0.36–1.91 μg/m<sup>3</sup> and 0.05–0.21 μg/m<sup>3</sup> to PM<sub>2.5</sub> and maximum daily 8-h average (MDA8) concentrations of O<sub>3</sub>. The health exposure risks of PM<sub>2.5</sub> and O<sub>3</sub> were higher in catering enterprises in southern cities than in northern cities and were higher in urban areas than in suburban areas. The average hazardous VOCs (HVOCs) concentrations ranged from 53 ± 16 to 357 ± 31 μg/m<sup>3</sup> in kitchen breathing areas. Acrolein was the primary contributor to the hazard index (HI) of all VOC species, accounting for 50.9%–99.5%. The total incremental lifetime carcinogenic risk (ILCR) of all cuisines exceeded the acceptable thresholds of 1.00 × 10<sup>−6</sup>. These findings provide insights that can aid in the formation and implementation of pollutant mitigation strategies in the catering industry.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"338 ","pages":"Article 120837"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive evaluation of the atmospheric impacts and health risks of cooking fumes from different cuisines\",\"authors\":\"Junfeng Zhang , Wenjiao Duan , Shuiyuan Cheng , Chuanda Wang\",\"doi\":\"10.1016/j.atmosenv.2024.120837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pollutants emitted by catering enterprises pose a significant threat to the environment and public health. In this study, based on a systematic analysis of volatile organic compound (VOC) emission characteristics of different cuisines, the contribution of cooking emissions from catering enterprises to the PM<sub>2.5</sub> and O<sub>3</sub> concentrations in the atmosphere was evaluated using generation potential calculations and WRF-CAMx simulations. The health exposure risks of VOCs in kitchen breathing areas and those of PM<sub>2.5</sub> and O<sub>3</sub> contributed by the catering enterprises were evaluated. The generation potential calculation results showed that the catering enterprises exhibit 2.21–5.00 gO<sub>3</sub>/gVOCs of ozone formation potential (OFP) and 0.07–0.21 gSOA/gVOCs of secondary organic aerosol production potential (SOAP). The WRF-CAMx simulation results indicated that cooking emissions from catering enterprises contribute 0.36–1.91 μg/m<sup>3</sup> and 0.05–0.21 μg/m<sup>3</sup> to PM<sub>2.5</sub> and maximum daily 8-h average (MDA8) concentrations of O<sub>3</sub>. The health exposure risks of PM<sub>2.5</sub> and O<sub>3</sub> were higher in catering enterprises in southern cities than in northern cities and were higher in urban areas than in suburban areas. The average hazardous VOCs (HVOCs) concentrations ranged from 53 ± 16 to 357 ± 31 μg/m<sup>3</sup> in kitchen breathing areas. Acrolein was the primary contributor to the hazard index (HI) of all VOC species, accounting for 50.9%–99.5%. The total incremental lifetime carcinogenic risk (ILCR) of all cuisines exceeded the acceptable thresholds of 1.00 × 10<sup>−6</sup>. These findings provide insights that can aid in the formation and implementation of pollutant mitigation strategies in the catering industry.</div></div>\",\"PeriodicalId\":250,\"journal\":{\"name\":\"Atmospheric Environment\",\"volume\":\"338 \",\"pages\":\"Article 120837\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1352231024005120\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024005120","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A comprehensive evaluation of the atmospheric impacts and health risks of cooking fumes from different cuisines
Pollutants emitted by catering enterprises pose a significant threat to the environment and public health. In this study, based on a systematic analysis of volatile organic compound (VOC) emission characteristics of different cuisines, the contribution of cooking emissions from catering enterprises to the PM2.5 and O3 concentrations in the atmosphere was evaluated using generation potential calculations and WRF-CAMx simulations. The health exposure risks of VOCs in kitchen breathing areas and those of PM2.5 and O3 contributed by the catering enterprises were evaluated. The generation potential calculation results showed that the catering enterprises exhibit 2.21–5.00 gO3/gVOCs of ozone formation potential (OFP) and 0.07–0.21 gSOA/gVOCs of secondary organic aerosol production potential (SOAP). The WRF-CAMx simulation results indicated that cooking emissions from catering enterprises contribute 0.36–1.91 μg/m3 and 0.05–0.21 μg/m3 to PM2.5 and maximum daily 8-h average (MDA8) concentrations of O3. The health exposure risks of PM2.5 and O3 were higher in catering enterprises in southern cities than in northern cities and were higher in urban areas than in suburban areas. The average hazardous VOCs (HVOCs) concentrations ranged from 53 ± 16 to 357 ± 31 μg/m3 in kitchen breathing areas. Acrolein was the primary contributor to the hazard index (HI) of all VOC species, accounting for 50.9%–99.5%. The total incremental lifetime carcinogenic risk (ILCR) of all cuisines exceeded the acceptable thresholds of 1.00 × 10−6. These findings provide insights that can aid in the formation and implementation of pollutant mitigation strategies in the catering industry.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.