地幔熔化过程中镍同位素的行为

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geochimica et Cosmochimica Acta Pub Date : 2024-10-05 DOI:10.1016/j.gca.2024.10.002
Xu-Han Dong , Shui-Jiong Wang , Kwan-Nang Pang , Ji Shen , Yi-Xiang Chen , Mojtaba Rostami-Hossouri , Habibollah Ghasemi
{"title":"地幔熔化过程中镍同位素的行为","authors":"Xu-Han Dong ,&nbsp;Shui-Jiong Wang ,&nbsp;Kwan-Nang Pang ,&nbsp;Ji Shen ,&nbsp;Yi-Xiang Chen ,&nbsp;Mojtaba Rostami-Hossouri ,&nbsp;Habibollah Ghasemi","doi":"10.1016/j.gca.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>Mantle-derived mafic rocks show relatively large variations in nickel (Ni) isotopes and mostly isotopically light compared to the bulk silicate Earth (BSE). Whether this signature is due to the source heterogeneity or controlled by melting processes has been a debatable issue. Here, we analyzed Ni isotopic compositions of 18 intraplate basalts from the Sabzevar region, northern Iran and 16 serpentinized peridotites from Cyprus and South China. The Sabzevar basalts were likely sourced from a sulfur-free/barren mantle domain with recycled pyroxenites involved, manifested by their high Cu contents (127–265 ppm), Fe<sub>T</sub>/Mn (58.2–77.4) and Zn/Fe<sub>T</sub> ratios (11.9–16.4). The Ni isotopic compositions of the Sabzevar basalts (average <em>δ</em><sup>60/58</sup>Ni = +0.15 ± 0.08 ‰; 2SD) are slightly heavier than the BSE value (average <em>δ</em><sup>60/58</sup>Ni = +0.11 ± 0.06 ‰; 2SD), consistent with equilibrium Ni isotope fractionation during mantle silicate melting as predicted by ionic model calculations. Our new data of serpentinized peridotites (average <em>δ</em><sup>60/58</sup>Ni = +0.16 ± 0.06 ‰; 2SD), together with previously reported data for oceanic sediments and metabasalts, suggest that recycled lithologies have mantle-like or relatively heavy Ni isotopic compositions. Thus, the isotopically light Ni in mafic rocks is unlikely to be caused by crustal recycling-induced mantle heterogeneity. Rather, the light Ni isotopic signature is caused by the dissolution of recycled sulfides into the mantle melts. We suggest two sulfide dissolution models (“dissolve and go” and “dissolve and equilibrium”) to describe the <em>δ</em><sup>60/58</sup>Ni and Cu systematics in terrestrial basalts. In both models, the initial sulfide content (<em>S<sub>initial</sub></em>) and oxygen fugacity (<em>f</em>O<sub>2</sub>) exert a major control on Ni isotopic compositions of resulting melts. These two parameters vary among different geological settings. Basalts derived from mantle sources with high <em>S<sub>initial</sub></em> and <em>f</em>O<sub>2</sub> are characterized by light Ni isotopic compositions, whereas basalts sourced from sulfur-free/barren and reduced mantle domains are likely characterized by heavy Ni isotopic compositions, aligning with the characteristic observed in natural samples.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"385 ","pages":"Pages 34-44"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The behavior of nickel isotopes during mantle melting\",\"authors\":\"Xu-Han Dong ,&nbsp;Shui-Jiong Wang ,&nbsp;Kwan-Nang Pang ,&nbsp;Ji Shen ,&nbsp;Yi-Xiang Chen ,&nbsp;Mojtaba Rostami-Hossouri ,&nbsp;Habibollah Ghasemi\",\"doi\":\"10.1016/j.gca.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mantle-derived mafic rocks show relatively large variations in nickel (Ni) isotopes and mostly isotopically light compared to the bulk silicate Earth (BSE). Whether this signature is due to the source heterogeneity or controlled by melting processes has been a debatable issue. Here, we analyzed Ni isotopic compositions of 18 intraplate basalts from the Sabzevar region, northern Iran and 16 serpentinized peridotites from Cyprus and South China. The Sabzevar basalts were likely sourced from a sulfur-free/barren mantle domain with recycled pyroxenites involved, manifested by their high Cu contents (127–265 ppm), Fe<sub>T</sub>/Mn (58.2–77.4) and Zn/Fe<sub>T</sub> ratios (11.9–16.4). The Ni isotopic compositions of the Sabzevar basalts (average <em>δ</em><sup>60/58</sup>Ni = +0.15 ± 0.08 ‰; 2SD) are slightly heavier than the BSE value (average <em>δ</em><sup>60/58</sup>Ni = +0.11 ± 0.06 ‰; 2SD), consistent with equilibrium Ni isotope fractionation during mantle silicate melting as predicted by ionic model calculations. Our new data of serpentinized peridotites (average <em>δ</em><sup>60/58</sup>Ni = +0.16 ± 0.06 ‰; 2SD), together with previously reported data for oceanic sediments and metabasalts, suggest that recycled lithologies have mantle-like or relatively heavy Ni isotopic compositions. Thus, the isotopically light Ni in mafic rocks is unlikely to be caused by crustal recycling-induced mantle heterogeneity. Rather, the light Ni isotopic signature is caused by the dissolution of recycled sulfides into the mantle melts. We suggest two sulfide dissolution models (“dissolve and go” and “dissolve and equilibrium”) to describe the <em>δ</em><sup>60/58</sup>Ni and Cu systematics in terrestrial basalts. In both models, the initial sulfide content (<em>S<sub>initial</sub></em>) and oxygen fugacity (<em>f</em>O<sub>2</sub>) exert a major control on Ni isotopic compositions of resulting melts. These two parameters vary among different geological settings. Basalts derived from mantle sources with high <em>S<sub>initial</sub></em> and <em>f</em>O<sub>2</sub> are characterized by light Ni isotopic compositions, whereas basalts sourced from sulfur-free/barren and reduced mantle domains are likely characterized by heavy Ni isotopic compositions, aligning with the characteristic observed in natural samples.</div></div>\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"385 \",\"pages\":\"Pages 34-44\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016703724005192\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703724005192","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

与大块硅酸盐地球(BSE)相比,来自地幔的岩浆岩在镍(Ni)同位素方面显示出相对较大的变化,且大部分同位素较轻。这种特征是源头异质性造成的,还是由熔融过程控制的,一直是一个有争议的问题。在此,我们分析了伊朗北部 Sabzevar 地区的 18 块板内玄武岩以及塞浦路斯和中国南方的 16 块蛇绿岩的镍同位素组成。Sabzevar玄武岩很可能来自无硫/贫瘠的地幔域,其中有回收的辉长岩,表现为较高的铜含量(127-265 ppm)、FeT/Mn(58.2-77.4)和Zn/FeT比(11.9-16.4)。Sabzevar 玄武岩的镍同位素组成(平均 δ60/58Ni = +0.15 ± 0.08 ‰;2SD)略重于 BSE 值(平均 δ60/58Ni = +0.11 ± 0.06 ‰;2SD),与离子模型计算所预测的地幔硅酸盐熔融过程中的平衡镍同位素分馏相一致。我们对蛇纹岩化橄榄岩的新数据(平均δ60/58Ni = +0.16 ± 0.06 ‰;2SD),以及之前报告的大洋沉积物和玄武岩的数据表明,再循环岩性具有类似地幔或相对较重的镍同位素组成。因此,岩浆岩中的轻镍同位素不太可能是由地壳再循环引起的地幔异质性造成的。相反,轻镍同位素特征是由回收的硫化物溶解到地幔熔体中造成的。我们提出了两种硫化物溶解模型("溶解并消失 "和 "溶解并平衡")来描述陆相玄武岩中的δ60/58Ni和Cu系统学。在这两个模型中,初始硫化物含量(Sinitial)和氧富集度(fO2)对所产生的熔体的镍同位素组成具有重要的控制作用。这两个参数在不同的地质环境中各不相同。来自高Sinitial和高fO2地幔源的玄武岩具有轻镍同位素组成的特征,而来自无硫/贫瘠和还原地幔域的玄武岩可能具有重镍同位素组成的特征,这与在天然样品中观察到的特征一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The behavior of nickel isotopes during mantle melting
Mantle-derived mafic rocks show relatively large variations in nickel (Ni) isotopes and mostly isotopically light compared to the bulk silicate Earth (BSE). Whether this signature is due to the source heterogeneity or controlled by melting processes has been a debatable issue. Here, we analyzed Ni isotopic compositions of 18 intraplate basalts from the Sabzevar region, northern Iran and 16 serpentinized peridotites from Cyprus and South China. The Sabzevar basalts were likely sourced from a sulfur-free/barren mantle domain with recycled pyroxenites involved, manifested by their high Cu contents (127–265 ppm), FeT/Mn (58.2–77.4) and Zn/FeT ratios (11.9–16.4). The Ni isotopic compositions of the Sabzevar basalts (average δ60/58Ni = +0.15 ± 0.08 ‰; 2SD) are slightly heavier than the BSE value (average δ60/58Ni = +0.11 ± 0.06 ‰; 2SD), consistent with equilibrium Ni isotope fractionation during mantle silicate melting as predicted by ionic model calculations. Our new data of serpentinized peridotites (average δ60/58Ni = +0.16 ± 0.06 ‰; 2SD), together with previously reported data for oceanic sediments and metabasalts, suggest that recycled lithologies have mantle-like or relatively heavy Ni isotopic compositions. Thus, the isotopically light Ni in mafic rocks is unlikely to be caused by crustal recycling-induced mantle heterogeneity. Rather, the light Ni isotopic signature is caused by the dissolution of recycled sulfides into the mantle melts. We suggest two sulfide dissolution models (“dissolve and go” and “dissolve and equilibrium”) to describe the δ60/58Ni and Cu systematics in terrestrial basalts. In both models, the initial sulfide content (Sinitial) and oxygen fugacity (fO2) exert a major control on Ni isotopic compositions of resulting melts. These two parameters vary among different geological settings. Basalts derived from mantle sources with high Sinitial and fO2 are characterized by light Ni isotopic compositions, whereas basalts sourced from sulfur-free/barren and reduced mantle domains are likely characterized by heavy Ni isotopic compositions, aligning with the characteristic observed in natural samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
期刊最新文献
Association of tungsten with aluminosilicate mineral colloids and silicotungstates in soil porewaters: Insights into the unexpectedly high tungsten mobility in soil Submicron-sized anhydrous crystalline silicates and their relation to amorphous silicate in the matrix of Acfer 094 Fe-isotopic evidence for hydrothermal reworking as a mechanism to form high-grade Fe-Ti-V oxide ores in layered intrusions Copper isotopic evidence of microbial gold fixation in the Mesoarchean Witwatersrand Basin The geochronology and cooling history of type 7 chondrites: Insights into the early impact events on chondritic parent body
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1