钇铝石榴石(YAG)纳米粉体和陶瓷的制备:间歇式反应器与塞流式反应器的比较

IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS Open Ceramics Pub Date : 2024-09-11 DOI:10.1016/j.oceram.2024.100675
Florian Delaunay, Lucie Chrétien, Rémy Boulesteix, Alexandre Maître
{"title":"钇铝石榴石(YAG)纳米粉体和陶瓷的制备:间歇式反应器与塞流式反应器的比较","authors":"Florian Delaunay,&nbsp;Lucie Chrétien,&nbsp;Rémy Boulesteix,&nbsp;Alexandre Maître","doi":"10.1016/j.oceram.2024.100675","DOIUrl":null,"url":null,"abstract":"<div><div>In this study YAG (Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>) nanopowders have been synthetized by a reverse co-precipitation method with two different designs of reactors: batch and plug-flow. The impact of both the reactor design and the synthesis temperature on the features of nanopowders so-synthetized was studied. The reactor design governs the pH evolution and precipitation kinetics during synthesis. Correlations were found between the reactor design and nanopowders stoichiometry and morphology. The plug-flow reactor allows obtaining homogeneous, well-crystallized and single-phased YAG nanopowders after calcination. Then, the sintering ability of as-obtained nanopowders was investigated. Fully dense YAG-based ceramics were obtained with the nanopowders made from the plug-flow reactor by combining uniaxial pressing and sintering at 1700 °C. Finally, a plug-flow reactor with very simple and inexpensive design would allow easier upscale of the synthesis process of YAG-based nanopowders with well-controlled morphology and stoichiometry. As a result, YAG based transparent ceramic were obtained without sintering additive.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100675"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elaboration of Yttrium Aluminum Garnet (YAG) nanopowders and ceramics: Comparison between batch and plug-flow reactor\",\"authors\":\"Florian Delaunay,&nbsp;Lucie Chrétien,&nbsp;Rémy Boulesteix,&nbsp;Alexandre Maître\",\"doi\":\"10.1016/j.oceram.2024.100675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study YAG (Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>) nanopowders have been synthetized by a reverse co-precipitation method with two different designs of reactors: batch and plug-flow. The impact of both the reactor design and the synthesis temperature on the features of nanopowders so-synthetized was studied. The reactor design governs the pH evolution and precipitation kinetics during synthesis. Correlations were found between the reactor design and nanopowders stoichiometry and morphology. The plug-flow reactor allows obtaining homogeneous, well-crystallized and single-phased YAG nanopowders after calcination. Then, the sintering ability of as-obtained nanopowders was investigated. Fully dense YAG-based ceramics were obtained with the nanopowders made from the plug-flow reactor by combining uniaxial pressing and sintering at 1700 °C. Finally, a plug-flow reactor with very simple and inexpensive design would allow easier upscale of the synthesis process of YAG-based nanopowders with well-controlled morphology and stoichiometry. As a result, YAG based transparent ceramic were obtained without sintering additive.</div></div>\",\"PeriodicalId\":34140,\"journal\":{\"name\":\"Open Ceramics\",\"volume\":\"20 \",\"pages\":\"Article 100675\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666539524001391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539524001391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用反向共沉淀法合成了 YAG(Y3Al5O12)纳米粉体,并使用了两种不同设计的反应器:间歇式反应器和塞流式反应器。研究了反应器设计和合成温度对所合成纳米粉体特征的影响。反应器的设计决定了合成过程中 pH 值的变化和沉淀动力学。研究发现,反应器设计与纳米粉体的化学计量和形态之间存在相关性。塞流式反应器可以在煅烧后获得均匀、结晶良好和单相的 YAG 纳米粉体。然后,研究了获得的纳米粉体的烧结能力。利用塞流反应器制备的纳米粉体,结合单轴压制和 1700 ℃ 烧结,获得了完全致密的 YAG 基陶瓷。最后,塞流式反应器的设计非常简单且成本低廉,可以更容易地扩大具有良好形态和化学计量学控制的 YAG 基纳米粉体合成工艺的规模。因此,无需烧结添加剂就能获得基于 YAG 的透明陶瓷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elaboration of Yttrium Aluminum Garnet (YAG) nanopowders and ceramics: Comparison between batch and plug-flow reactor
In this study YAG (Y3Al5O12) nanopowders have been synthetized by a reverse co-precipitation method with two different designs of reactors: batch and plug-flow. The impact of both the reactor design and the synthesis temperature on the features of nanopowders so-synthetized was studied. The reactor design governs the pH evolution and precipitation kinetics during synthesis. Correlations were found between the reactor design and nanopowders stoichiometry and morphology. The plug-flow reactor allows obtaining homogeneous, well-crystallized and single-phased YAG nanopowders after calcination. Then, the sintering ability of as-obtained nanopowders was investigated. Fully dense YAG-based ceramics were obtained with the nanopowders made from the plug-flow reactor by combining uniaxial pressing and sintering at 1700 °C. Finally, a plug-flow reactor with very simple and inexpensive design would allow easier upscale of the synthesis process of YAG-based nanopowders with well-controlled morphology and stoichiometry. As a result, YAG based transparent ceramic were obtained without sintering additive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Ceramics
Open Ceramics Materials Science-Materials Chemistry
CiteScore
4.20
自引率
0.00%
发文量
102
审稿时长
67 days
期刊最新文献
Investigation of resin composition and printing parameters on the dimensional accuracy of alumina components fabricated via ceramic vat photopolymerization Image and numerical analyses for understanding the in vivo dissolution of partially crystalline bioactive glass S53P4 scaffolds Thermomechanical and thermal characterization of pressureless sintered TiB2 Preparation of ZnO@ZnS core-shell nanorod arrays with enhanced photocurrent for removal of methylene blue dyes in wastewater Evaluation of Boron Carbide powder stability under accelerated aging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1