Sonia Marín-Cortés , Mattia Biesuz , Aida Serrano , Emanuele De Bona , Esther Enríquez , José F. Fernández , Vincenzo M. Sglavo
{"title":"通过冷烧结建筑和拆迁废物骨料促进陶瓷材料的循环利用","authors":"Sonia Marín-Cortés , Mattia Biesuz , Aida Serrano , Emanuele De Bona , Esther Enríquez , José F. Fernández , Vincenzo M. Sglavo","doi":"10.1016/j.oceram.2024.100692","DOIUrl":null,"url":null,"abstract":"<div><div>A ceramic composition containing 95 wt% of construction and demolition waste-like material was consolidated by cold sintering process at 200 °C using KOH water solutions as the liquid medium. The relative density of the samples reaches ∼90 % of the theoretical one for process conditions of 600 MPa and 60 min. A post-annealing process at 1100 °C of the as-cold sintered samples causes a slight increase in the relative density and of their mechanical strength compared with conventionally sintered samples at 1100 °C and increases the shape factor of the Weibull distribution, thus increasing the reliability of the component. It is shown that cold sintering of the material avoids its high pyroplasticity, providing low shrinkage and reducing internal defects in the ceramic. This work represents the first exploration of the viability of manufacturing ceramic tiles with high recycled content contributing to the transition to a greener world.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promoting the circularity of ceramic materials through cold sintering of aggregates from construction and demolition waste\",\"authors\":\"Sonia Marín-Cortés , Mattia Biesuz , Aida Serrano , Emanuele De Bona , Esther Enríquez , José F. Fernández , Vincenzo M. Sglavo\",\"doi\":\"10.1016/j.oceram.2024.100692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A ceramic composition containing 95 wt% of construction and demolition waste-like material was consolidated by cold sintering process at 200 °C using KOH water solutions as the liquid medium. The relative density of the samples reaches ∼90 % of the theoretical one for process conditions of 600 MPa and 60 min. A post-annealing process at 1100 °C of the as-cold sintered samples causes a slight increase in the relative density and of their mechanical strength compared with conventionally sintered samples at 1100 °C and increases the shape factor of the Weibull distribution, thus increasing the reliability of the component. It is shown that cold sintering of the material avoids its high pyroplasticity, providing low shrinkage and reducing internal defects in the ceramic. This work represents the first exploration of the viability of manufacturing ceramic tiles with high recycled content contributing to the transition to a greener world.</div></div>\",\"PeriodicalId\":34140,\"journal\":{\"name\":\"Open Ceramics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666539524001561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539524001561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
摘要
以 KOH 水溶液为液体介质,在 200 °C 下通过冷烧结工艺固结了含有 95% 建筑和拆除废料类材料的陶瓷组合物。在 600 兆帕和 60 分钟的工艺条件下,样品的相对密度达到理论值的 90%。与传统的 1100 °C 烧结样品相比,在 1100 °C 下对冷烧结样品进行后退火处理可使相对密度和机械强度略有增加,并提高威布尔分布的形状系数,从而提高部件的可靠性。研究表明,材料的冷烧结可避免其较高的热塑性,提供较低的收缩率并减少陶瓷的内部缺陷。这项研究首次探索了制造高回收利用率瓷砖的可行性,有助于向绿色世界过渡。
Promoting the circularity of ceramic materials through cold sintering of aggregates from construction and demolition waste
A ceramic composition containing 95 wt% of construction and demolition waste-like material was consolidated by cold sintering process at 200 °C using KOH water solutions as the liquid medium. The relative density of the samples reaches ∼90 % of the theoretical one for process conditions of 600 MPa and 60 min. A post-annealing process at 1100 °C of the as-cold sintered samples causes a slight increase in the relative density and of their mechanical strength compared with conventionally sintered samples at 1100 °C and increases the shape factor of the Weibull distribution, thus increasing the reliability of the component. It is shown that cold sintering of the material avoids its high pyroplasticity, providing low shrinkage and reducing internal defects in the ceramic. This work represents the first exploration of the viability of manufacturing ceramic tiles with high recycled content contributing to the transition to a greener world.