{"title":"斯洛文尼亚中部 Litija 矿床的四面体(汞):矿物化学对流体演化过程的启示","authors":"Aleš Šoster , Federica Zaccarini , Janez Zavašnik","doi":"10.1016/j.oregeorev.2024.106272","DOIUrl":null,"url":null,"abstract":"<div><div>For over a century, the main carrier of Silver in the Litija mineralisation has been debated, with fine-grained galena often identified as the primary host. The <em>in-situ</em> quantitative microanalysis of a silver-bearing ore from the Alma orebody reveals that silver is not hosted within the galena but occurs instead as inclusions within tetrahedrite-(Hg). The mechanism of silver incorporation in tetrahedrite is complex and may occur through atom-to-atom substitution, where monovalent silver replaces monovalent copper (Ag<sup>+</sup> ↔ Cu<sup>+</sup>). Additionally, silver can be present as a separate phase, either as nanoscale inclusions of acanthite or through the replacement of pre-existing silver-rich chalcopyrite. Elemental correlations and minor variations in the element distribution within the studied tetrahedrite provide insights into the chemistry of the mineralizing fluid. These findings suggest an initial reducing, near-neutral, low-chlorinity fluid promoting incorporation of Sb<sup>3+</sup> and Hg<sup>2+</sup> into tetrahedrite. This fluid subsequently mixed with high-salinity, Cl-rich, near-neutral fluid transporting Zn<sup>2+</sup>. Sulfide precipitation introduced additional acidity in the mixed fluids, altering the pH and promoting As<sup>3+</sup> and Zn<sup>2+</sup> incorporation into tetrahedrite. We suggest that Hg<sup>2+</sup> ↔ Zn<sup>2+</sup> substitution in tetrahedrite is influenced by pH fluctuations and fluid mixing. These findings provide new insights into the geochemical processes governing trace element incorporation in sulfosalt minerals and offer valuable framework for understanding mineralization in similar hydrothermal systems worldwide.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"173 ","pages":"Article 106272"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tetrahedrite-(Hg) from the Litija deposit, Central Slovenia: Mineral chemistry insights into fluid evolution processes\",\"authors\":\"Aleš Šoster , Federica Zaccarini , Janez Zavašnik\",\"doi\":\"10.1016/j.oregeorev.2024.106272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For over a century, the main carrier of Silver in the Litija mineralisation has been debated, with fine-grained galena often identified as the primary host. The <em>in-situ</em> quantitative microanalysis of a silver-bearing ore from the Alma orebody reveals that silver is not hosted within the galena but occurs instead as inclusions within tetrahedrite-(Hg). The mechanism of silver incorporation in tetrahedrite is complex and may occur through atom-to-atom substitution, where monovalent silver replaces monovalent copper (Ag<sup>+</sup> ↔ Cu<sup>+</sup>). Additionally, silver can be present as a separate phase, either as nanoscale inclusions of acanthite or through the replacement of pre-existing silver-rich chalcopyrite. Elemental correlations and minor variations in the element distribution within the studied tetrahedrite provide insights into the chemistry of the mineralizing fluid. These findings suggest an initial reducing, near-neutral, low-chlorinity fluid promoting incorporation of Sb<sup>3+</sup> and Hg<sup>2+</sup> into tetrahedrite. This fluid subsequently mixed with high-salinity, Cl-rich, near-neutral fluid transporting Zn<sup>2+</sup>. Sulfide precipitation introduced additional acidity in the mixed fluids, altering the pH and promoting As<sup>3+</sup> and Zn<sup>2+</sup> incorporation into tetrahedrite. We suggest that Hg<sup>2+</sup> ↔ Zn<sup>2+</sup> substitution in tetrahedrite is influenced by pH fluctuations and fluid mixing. These findings provide new insights into the geochemical processes governing trace element incorporation in sulfosalt minerals and offer valuable framework for understanding mineralization in similar hydrothermal systems worldwide.</div></div>\",\"PeriodicalId\":19644,\"journal\":{\"name\":\"Ore Geology Reviews\",\"volume\":\"173 \",\"pages\":\"Article 106272\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ore Geology Reviews\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169136824004050\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore Geology Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169136824004050","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Tetrahedrite-(Hg) from the Litija deposit, Central Slovenia: Mineral chemistry insights into fluid evolution processes
For over a century, the main carrier of Silver in the Litija mineralisation has been debated, with fine-grained galena often identified as the primary host. The in-situ quantitative microanalysis of a silver-bearing ore from the Alma orebody reveals that silver is not hosted within the galena but occurs instead as inclusions within tetrahedrite-(Hg). The mechanism of silver incorporation in tetrahedrite is complex and may occur through atom-to-atom substitution, where monovalent silver replaces monovalent copper (Ag+ ↔ Cu+). Additionally, silver can be present as a separate phase, either as nanoscale inclusions of acanthite or through the replacement of pre-existing silver-rich chalcopyrite. Elemental correlations and minor variations in the element distribution within the studied tetrahedrite provide insights into the chemistry of the mineralizing fluid. These findings suggest an initial reducing, near-neutral, low-chlorinity fluid promoting incorporation of Sb3+ and Hg2+ into tetrahedrite. This fluid subsequently mixed with high-salinity, Cl-rich, near-neutral fluid transporting Zn2+. Sulfide precipitation introduced additional acidity in the mixed fluids, altering the pH and promoting As3+ and Zn2+ incorporation into tetrahedrite. We suggest that Hg2+ ↔ Zn2+ substitution in tetrahedrite is influenced by pH fluctuations and fluid mixing. These findings provide new insights into the geochemical processes governing trace element incorporation in sulfosalt minerals and offer valuable framework for understanding mineralization in similar hydrothermal systems worldwide.
期刊介绍:
Ore Geology Reviews aims to familiarize all earth scientists with recent advances in a number of interconnected disciplines related to the study of, and search for, ore deposits. The reviews range from brief to longer contributions, but the journal preferentially publishes manuscripts that fill the niche between the commonly shorter journal articles and the comprehensive book coverages, and thus has a special appeal to many authors and readers.